Refine Your Search


Search Results

Viewing 1 to 17 of 17
Technical Paper

Windshield Investigation - Manufacturing & Installation Stresses

An early development vehicle experienced an unusually high rate of windshield breakage. Most breaks were identified as due to impact, but the severity of impact was low. It was reasoned that the windshield should possess a greater level of robustness to impact. Many theories were put forth to explain the breakage data. It was universally agreed that the unusual breakage rate could be due to only one condition, but its source was indefinite. The condition present must be tensile stress. One of three situations were considered regarding its source: 1) the tensile stress was present in the glass after manufacture due to improper annealing; 2) the installation of the windshield into the vehicle body put the glass into stress; 3) some combination of the other two sources. A gray-field polariscope was used to measure the stresses of the windshield from both the manufacturing process as well as the installation in the vehicle.
Technical Paper

Validation of the SCARLET Advanced Array on DS1

In October, 1998, the first of the NASA New Millennium Spacecraft, DS1, was successfully launched into space. The objectives for this spacecraft are to test advanced technologies that can reduce the cost or risk of future missions. One of these technologies is the Solar Concentrator Array with Refractive Linear Element Technology (SCARLET). Although part of the advanced technology validation study, the array is also the spacecraft power source. Funded by BMDO, the SCARLET™ concentrator solar array is the first spaceflight application of a refractive lens concentrator. As part of the DS1 validation process, the amount of array diagnostics is very extensive. The data obtained includes temperature measurements at numerous locations on the 2-wing solar array. For each individual panel, a 5-cell module in one of the circuit strings is wired so that a complete I-V curve can be obtained. This data is used to verify sun pointing accuracy and array output performance.
Technical Paper

Thermal Strategy for the Phoenix Robotic Arm Deployment

The Mars Scout Phoenix Lander successfully landed in the Martian northern latitude on May 25, 2008. The Robotic Arm, which was designed to dig and to transfer soil samples to other Lander instruments, contained a number of actuators that had specific operational windows on the Martian surface due to the bearing lubricant. The deployment of the Robotic Arm was planned for Sol 2 (Mars days are referred to “Sols”). A few weeks before Mars landing, the Robotic Arm operations team learned that a strict flight rule had been imposed. It specified that the deployment shall be accomplished when the actuators were at or above −25°C since the deployment activity was qualified with the actuators at −40°C. Furthermore, the deployment plan identified a window of opportunity between 13:00 Local Solar Time (LST, equivalent to dividing the Sol into 24 equal Martian hours) and 15:30 LST.
Journal Article

Thermal Design Trade Study for the Mars Science Laboratory ChemCam Body Unit

The Mars Science Laboratory will be the next Martian mobility system that is scheduled to launch in the fall of 2011. The ChemCam Instrument is a part of the MSL science payload suite. It is innovative for planetary exploration in using a technique referred to as laser breakdown spectroscopy to determine the chemical composition of samples from distances of up to about 9 meters away. ChemCam is led by a team at the Los Alamos National Laboratory and the Centre d'Etude Spatiale des Rayonnements in Toulouse, France. The portion of ChemCam that is located inside the Rover, the ChemCam Body Unit contains the imaging charged-coupled device (CCD) detectors. Late in the design cycle, the ChemCam team explored alternate thermal design architectures to provide CCD operational overlap with the Rover's remote sensing instruments. This operational synergy is necessary to enable planning for subsequent laser firings and geological context.
Technical Paper

The Advanced Design of a Liquid Cooling Garment Through Long-Term Research: Implications of the Test Results on Three Different Garments

The most recent goal of our research program was to identify the optimal features of each of three garments to maintain core temperature and comfort under intensive physical exertion. Four males and 2 females between the ages of 22 and 46 participated in this study. The garments evaluated were the MACS-Delphi, Russian Orlan, and NASA LCVG. Subjects were tested on different days in 2 different environmental chamber temperature/humidity conditions (24°C/H∼28%; 35°C/H∼20%). Each session consisted of stages of treadmill walking/running (250W to 700W at different stages) and rest. In general, the findings showed few consistent differences among the garments. The MACS-Delphi was better able to maintain subjects within a skin and core temperature comfort zone than was evident in the other garments as indicated by a lesser fluctuation in temperatures across physical exertion levels.
Technical Paper

Sunroof Buffeting Suppression Using a Dividing Bar

This paper presents the results of CFD study on sunroof buffeting suppression using a dividing bar. The role of a dividing bar in side window buffeting case was illustrated in a previous study [8]. For the baseline model of the selected vehicle in this study, a very high level of sunroof buffeting, 133dB, has been found. The CFD simulation shows that the buffeting noise can be significantly reduced if a dividing bar is installed at the sunroof. A further optimization study on the dividing bar demonstrates that the peak buffeting level can be reduced to 123dB for the selected vehicle if the dividing bar is installed at its optimal location, 65% of the total length from the front edge of the sunroof. The peak buffeting level can be further reduced to 100dB if the dividing bar takes its optimal width 80mm, 15% of the total length of the sunroof for this vehicle, while staying at its optimal location.
Technical Paper

Preliminary Development of a Suit Port for Planetary Surface EVA — Design Studies

This paper present a summary of the design studies for the suit port proof of concept. The Suit Port reduces the need for airlocks by docking the suits directly to a rover or habitat bulkhead. The benefits include reductions in cycle time and consumables traditionally used when transferring from a pressurized compartment to EVA and mitigation of planetary surface dust from entering into the cabin. The design focused on the development of an operational proof of concept evaluated against technical feasibility, level of confidence in design, robustness to environment and failure, and the manufacturability. A future paper will discuss the overall proof of concept and provide results from evaluation testing including gas leakage rates upon completion of the testing program.
Technical Paper

Optimization Study for Sunroof Buffeting Reduction

This paper presents the results of optimization study for sunroof buffeting reduction using CFD technology. For an early prototype vehicle as a baseline model in this study a high level of sunroof buffeting 133dB has been found. The CFD simulation shows that the buffeting noise can be reduced by installing a wind deflector at its optimal angle 40 degrees from the upward vertical line. Further optimization study demonstrates that the buffeting peak SPL can be reduced to 97dB if the sunroof glass moves to its optimal position, 50% of the total length of the sunroof from the front edge. For any other vehicles, the optimization procedure is the same to get the optimal parameters. On the other hand, however, this optimization study is only based on fluid dynamics principle without considering manufacturability, styling, cost, etc. Further work is needed to utilize the results in the production design.
Technical Paper

Noise Environment Reduction Foam Spheres in Space

The advent of lightweight fairings for new spacecraft and the increased thrust of new launch vehicles have intensified the need for better techniques for predicting and for reducing the low frequency noise environment of spacecraft at lift-off. This paper presents a VAPEPS (VibroAcoustic Payload Environment Prediction System) parametrical analysis of the noise reduction of spacecraft fairings and explores a novel technique for increasing the low frequency noise reduction of lightweight fairings by approximately 10 dB.
Technical Paper

Innovative Schematic Concept Analysis for a Space Suit Portable Life Support Subsystem

Conceptual designs for a space suit Personal Life Support Subsystem (PLSS) were developed and assessed to determine if upgrading the system using new, emerging, or projected technologies to fulfill basic functions would result in mass, volume, or performance improvements. Technologies were identified to satisfy each of the functions of the PLSS in three environments (zero-g, Lunar, and Martian) and in three time frames (2006, 2010, and 2020). The viability of candidate technologies was evaluated using evaluation criteria such as safety, technology readiness, and reliability. System concepts (schematics) were developed for combinations of time frame and environment by assigning specific technologies to each of four key functions of the PLSS -- oxygen supply, waste removal, thermal control, and power. The PLSS concepts were evaluated using the ExtraVehicular Activity System Sizing Analysis Tool, software created by NASA to analyze integrated system mass, volume, power and thermal loads.
Technical Paper

Digital Filtering for J211 Requirements using a Fast Fourier Transform Based Filter

The need for low pass filters stems from a need to eliminate high frequency noise from raw data (the output of the data acquisition system). As an example, consider the frame of a vehicle used in a crash test. The frame will exhibit high frequency vibrations, which do not affect the vehicles movement in space. The use of filters has since been expanded to include such things as the calculation of potential injury. Phaseless filters are now required for all FMVSS-208 injury calculations (see references). A single filter formula can not allow all test facilities to comply with the J211 CFC corridors. Even the SAE J211 recommended Butterworth filter may not comply with the J211 requirements. A new, universal, filtering system is required to harmonize the data processing at all testing facilities. The use of Fourier series for filtering provides a very powerful, yet overlooked, solution to today's filtering problems.
Technical Paper

Design and Flight Qualification of a Paraffin-Actuated Heat Switch for Mars Surface Applications

The Mars Exploration Rover (MER) flight system uses mechanical, paraffin-actuated heat switches as part of its secondary battery thermal control system. This paper describes the design, flight qualification, and performance of the heat switch. Although based on previous designs by Starsys Research Corporation1,2, the MER mission requirements have necessitated new design features and an extensive qualification program. The design utilizes the work created by the expansion of a paraffin wax by bringing into contact two aluminum surfaces, thereby forming a heat conduction path. As the paraffin freezes and contracts, compression springs separate the surfaces to remove the conduction path. The flight qualification program involved extensive thermal performance, structural, and life testing.
Technical Paper

Cooling Fan Modeling to Support Robust AC/Cooling System Simulation

Advanced design of modern engine cooling and vehicle HVAC components involves sophisticated simulation. In particular, front end air flow models must be able to cover the complete range of conditions from idle to high road speeds involving multiple fans of varying types both powered and unpowered. This paper presents a model for electric radiator cooling fans which covers the complete range of powered and unpowered (freewheel) operation. The model applies equally well to mechanical drive fans.
Technical Paper

Comparison of Indoor Vehicle Thermal Soak Tests to Outdoor Tests

Researchers at the National Renewable Energy Laboratory conducted outdoor vehicle thermal soak tests in Golden, Colorado, in September 2002. The same environmental conditions and vehicle were then tested indoors in two DaimlerChrysler test cells, one with metal halide lamps and one with infrared lamps. Results show that the vehicle's shaded interior temperatures correlated well with the outdoor data, while temperatures in the direct sun did not. The large lamp array situated over the vehicle caused the roof to be significantly hotter indoors. Yet, inside the vehicle, the instrument panel was cooler due to the geometry of the lamp array and the spectral difference between the lamps and sun. Results indicate that solar lamps effectively heat the cabin interior in indoor vehicle soak tests for climate control evaluation and SCO3 emissions tests. However, such lamps do not effectively assess vehicle skin temperatures and glazing temperatures.
Technical Paper

Comparative Space Suit Boot Test

In applications that require space-suited crewmembers to traverse rough terrain, boot fit and mobility are of critical importance to the crewmember's overall performance capabilities. Current extravehicular activity (EVA) boot designs were developed for micro-gravity applications, and as such, incorporate only minimal mobility features. Recently three advanced space suit boot designs were evaluated at the National Aeronautics and Space Administration Johnson Space Center (NASA/JSC). The three designs included: 1) a modified Space Shuttle suit (Extravehicular Mobility Unit or EMU) boot, 2) the Modified Experiment Boot designed and fabricated by RD & PE Zvezda JSC, and 3) a boot designed and fabricated by the David Clark Company. Descriptions of each configuration and rationale for each boot design are presented.
Technical Paper

A Miniature Quadrupole Mass Spectrometer Array and GC For Space Flight: Astronaut EVA and Cabin-Air Monitoring

A miniature quadrupole mass spectrometer array and gas chromatograph have been designed and built for NASA flight missions. Without the gas chromatograph the mass spectrometer is to be used for detection, by astronauts in EVA, of N2, O2, the hydrazines, and NH3 leaks in the hull of the International Space Station, and of adsorbed hydrazines on the astronauts’ suits. The fully-adapted astronaut system, with all software and visual readout, is called the Trace Gas Analyzer. When interfaced with the miniature gas chromatographic system, the mass spectrometer will be useful for a variety of NASA missions involving more complex gas mixtures. The missions include planetary exploration (to Venus, Europa, Titan, etc.), as well as cabin-air monitoring for long-duration human flight to the Moon, Mars, and beyond.
Technical Paper

A Filament Winding Concept to Improve the Strength and Stiffness Characteristics of Thermoplastic Large Injection Molded Composite Automotive Body Panels

The automobile industry is seeing an increased need for the application of plastics and their derivatives in various forms such as fiber reinforced plastics, in the design and manufacture of various automotive structural components, to reduce weight, cost and improve fuel efficiency. A lot of effort is being directed at the development of structural plastics, to meet specific automotive requirements such as stiffness, safety, strength, durability and environmental standards and recyclability. This paper presents the concept of reinforcing large injection molded fiber reinforced body panels with structural uni-directional fibers (carbon, graphite, kevlar or fiber glass) wound in tension around the body panels by filament winding technique. Structural uni-directional fibers in tension wound around the fiber reinforced plastic inner body panels would place these body panels under compression.