Refine Your Search

Topic

Author

Search Results

Technical Paper

Wissler Simulations of a Liquid Cooled and Ventilation Garment (LCVG) for Extravehicular Activity (EVA)

2006-07-17
2006-01-2238
In order to provide effective cooling for astronauts during extravehicular activities (EVAs), a liquid cooling and ventilation garment (LCVG) is used to remove heat by a series of tubes through which cooling water is circulated. To better predict the effectiveness of the LCVG and determine possible modifications to improve performance, computer simulations dealing with the interaction of the cooling garment with the human body have been run using the Wissler Human Thermal Model. Simulations have been conducted to predict the heat removal rate for various liquid cooled garment configurations. The current LCVG uses 48 cooling tubes woven into a fabric with cooling water flowing through the tubes. The purpose of the current project is to decrease the overall weight of the LCVG system. In order to achieve this weight reduction, advances in the garment heat removal rates need to be obtained.
Technical Paper

Windshield Investigation - Manufacturing & Installation Stresses

1999-09-28
1999-01-3160
An early development vehicle experienced an unusually high rate of windshield breakage. Most breaks were identified as due to impact, but the severity of impact was low. It was reasoned that the windshield should possess a greater level of robustness to impact. Many theories were put forth to explain the breakage data. It was universally agreed that the unusual breakage rate could be due to only one condition, but its source was indefinite. The condition present must be tensile stress. One of three situations were considered regarding its source: 1) the tensile stress was present in the glass after manufacture due to improper annealing; 2) the installation of the windshield into the vehicle body put the glass into stress; 3) some combination of the other two sources. A gray-field polariscope was used to measure the stresses of the windshield from both the manufacturing process as well as the installation in the vehicle.
Technical Paper

Validation of the SCARLET Advanced Array on DS1

1999-08-02
1999-01-2630
In October, 1998, the first of the NASA New Millennium Spacecraft, DS1, was successfully launched into space. The objectives for this spacecraft are to test advanced technologies that can reduce the cost or risk of future missions. One of these technologies is the Solar Concentrator Array with Refractive Linear Element Technology (SCARLET). Although part of the advanced technology validation study, the array is also the spacecraft power source. Funded by BMDO, the SCARLET™ concentrator solar array is the first spaceflight application of a refractive lens concentrator. As part of the DS1 validation process, the amount of array diagnostics is very extensive. The data obtained includes temperature measurements at numerous locations on the 2-wing solar array. For each individual panel, a 5-cell module in one of the circuit strings is wired so that a complete I-V curve can be obtained. This data is used to verify sun pointing accuracy and array output performance.
Technical Paper

Thermal Vacuum Testing of the Orbiting Carbon Observatory Instrument

2008-06-29
2008-01-2036
The Orbiting Carbon Observatory (OCO) instrument is scheduled for launch onboard an Orbital Sciences Corporation LEOStar-2 architecture spacecraft in December 2008. The instrument will collect data to identify CO2 sources and sinks and quantify their seasonal variability. OCO observations will permit the collection of spatially resolved, high resolution spectroscopic observations of CO2 and O2 absorption in reflected sunlight over both continents and oceans. OCO has three bore-sighted, high resolution, grating spectrometers which share a common telescope with similar optics and electronics. A 0.765 μm channel will be used for O2 observations, while the weak and strong CO2 bands will be observed with 1.61 μm and 2.06 μm channels, respectively. The OCO spacecraft circular polar orbit will be sun-synchronous with an inclination of 98.2 degrees, mean altitude of 705 km and 98.9 minute orbit period.
Technical Paper

Thermal Strategy for the Phoenix Robotic Arm Deployment

2009-07-12
2009-01-2438
The Mars Scout Phoenix Lander successfully landed in the Martian northern latitude on May 25, 2008. The Robotic Arm, which was designed to dig and to transfer soil samples to other Lander instruments, contained a number of actuators that had specific operational windows on the Martian surface due to the bearing lubricant. The deployment of the Robotic Arm was planned for Sol 2 (Mars days are referred to “Sols”). A few weeks before Mars landing, the Robotic Arm operations team learned that a strict flight rule had been imposed. It specified that the deployment shall be accomplished when the actuators were at or above −25°C since the deployment activity was qualified with the actuators at −40°C. Furthermore, the deployment plan identified a window of opportunity between 13:00 Local Solar Time (LST, equivalent to dividing the Sol into 24 equal Martian hours) and 15:30 LST.
Technical Paper

Thermal Performance of Space Suit Elements with Aerogel Insulation for Moon and Mars Exploration

2006-07-17
2006-01-2235
Flexible fiber-reinforced aerogel composites were studied for use as insulation materials of a future space suit for Moon and Mars exploration. High flexibility and good thermal insulation properties of fiber-reinforced silica aerogel composites at both high and low vacuum conditions make it a promising insulation candidate for the space suit application. This paper first presents the results of a durability (mechanical cycling) study of these aerogels composites in the context of retaining their thermal performance. The study shows that some of these Aerogels materials retained most of their insulation performance after up to 250,000 cycles of mechanical flex cycling. This paper also examines the problem of integrating these flexible aerogel composites into the current space suit elements.
Technical Paper

Thermal Performance Evaluation of a Small Loop Heat Pipe for Space Applications

2003-07-07
2003-01-2688
A Small Loop Heat Pipe (SLHP) featuring a wick of only 1.27 cm (0.5 inches) in diameter has been designed for use in spacecraft thermal control. It has several features to accommodate a wide range of environmental conditions in both operating and non-operating states. These include flexible transport lines to facilitate hardware integration, a radiator capable of sustaining over 100 freeze-thaw cycles using ammonia as a working fluid and a structural integrity to sustain acceleration loads up to 30 g. The small LHP has a maximum heat transport capacity of 120 Watts with thermal conductance ranging from 17 to 21 W/°C. The design incorporates heaters on the compensation chamber to modulate the heat transport from full-on to full-stop conditions. A set of start up heaters are attached to the evaporator body using a specially designed fin to assist the LHP in starting up when it is connected to a large thermal mass.
Technical Paper

Thermal Conductivity of Lofty Nonwovens in Space and Planetary Vacuum Environment

2001-07-09
2001-01-2166
For planetary exploration, new thermal insulation materials are needed to deal with unique environmental conditions presented to extravehicular activity (EVA). The thermal insulation material and system used in the existing space suit were specifically designed for low orbit environment. They are not adequate for low vacuum condition commonly found in planetary environments with a gas atmosphere. This study attempts to identify the types of lofty nonwoven thermal insulation materials and the construction parameters that yield the best performance for such application. Lofty nonwovens with different construction parameters are evaluated for their thermal conductivity performance. Three different types of fiber material: solid round fiber, hollow fiber, and grooved fiber, with various denier, needling intensity, and web density were evaluated.
Technical Paper

Thermal Analysis of Lightweight Liquid Cooling Garments Using Highly Conductive Materials

2005-07-11
2005-01-2972
This paper presents the analysis findings of a study reducing the overall mass of the lightweight liquid cooling garment (LCG). The LCG is a garment worn by crew to actively cool the body, for spacesuits and launch/entry suits. A mass reduction of 66% was desired for advanced missions. A thermal math model of the LCG was developed to predict its performance when various mass-reducing changes were implemented. Changes included varying the thermal conductivity and thickness of the garment or of the coolant tubes servicing the garment. A second model was developed to predict behavior of the suit when the cooling tubes were to be removed, and replaced with a highly-conducting (waterless) material. Findings are presented that show significant reductions in weight are theoretically possible by improving conductivity in the garment material.
Technical Paper

The Effects of Hydroforming on the Mechanical Properties and Crush Behaviors of Aluminum Tubes

2007-04-16
2007-01-0986
The effect of hydroforming on the mechanical properties and dynamic crush behaviors of tapered aluminum 6063-T4 tubes with octagonal cross section are investigated by experiments. First, the thickness profile of the hydroformed tube is measured by non-destructive examination technique using ultrasonic thickness gauge. The effect of hydroforming on the mechanical properties of the tube is investigated by quasi-static tensile tests of specimens prepared from different regions of the tube based on the thickness profile. The effect of hydroforming on the dynamic crush behaviors of the tube is investigated by axial crush tests under dynamic loads. Specimens and tubes are tested in two different heat treatment conditions: hydroformed-T4 (as-received) and T6. The results of the quasi-static tensile tests for the specimens in hydroformed-T4 condition show different amounts of work hardening depending on the regions, which the specimens are prepared from.
Technical Paper

The Advanced Design of a Liquid Cooling Garment Through Long-Term Research: Implications of the Test Results on Three Different Garments

2009-07-12
2009-01-2517
The most recent goal of our research program was to identify the optimal features of each of three garments to maintain core temperature and comfort under intensive physical exertion. Four males and 2 females between the ages of 22 and 46 participated in this study. The garments evaluated were the MACS-Delphi, Russian Orlan, and NASA LCVG. Subjects were tested on different days in 2 different environmental chamber temperature/humidity conditions (24°C/H∼28%; 35°C/H∼20%). Each session consisted of stages of treadmill walking/running (250W to 700W at different stages) and rest. In general, the findings showed few consistent differences among the garments. The MACS-Delphi was better able to maintain subjects within a skin and core temperature comfort zone than was evident in the other garments as indicated by a lesser fluctuation in temperatures across physical exertion levels.
Technical Paper

Testing and Modeling of Frequency Drops in Resonant Bending Fatigue Tests of Notched Crankshaft Sections

2004-03-08
2004-01-1501
Resonant frequencies of a resonant bending system with notched crankshaft sections are obtained experimentally and numerically in order to investigate the effect of notch depth on the drop of the resonant frequency of the system. Notches with the depths ranging from 1 to 5 mm, machined by an EDM (Electrical-Discharging Machining) system, were introduced in crankshaft sections at the fillet between the main crank pin and crank cheek. The resonant frequencies of the resonant bending system with the crankshaft sections with various notch depths were first obtained from the experiments. Three-dimensional finite element models of the resonant bending system with the crankshafts sections with various notch depths are then generated. The resonant frequencies based on the finite element computations are in good agreement with those based on the experimental results.
Technical Paper

Sunroof Buffeting Suppression Using a Dividing Bar

2007-04-16
2007-01-1552
This paper presents the results of CFD study on sunroof buffeting suppression using a dividing bar. The role of a dividing bar in side window buffeting case was illustrated in a previous study [8]. For the baseline model of the selected vehicle in this study, a very high level of sunroof buffeting, 133dB, has been found. The CFD simulation shows that the buffeting noise can be significantly reduced if a dividing bar is installed at the sunroof. A further optimization study on the dividing bar demonstrates that the peak buffeting level can be reduced to 123dB for the selected vehicle if the dividing bar is installed at its optimal location, 65% of the total length from the front edge of the sunroof. The peak buffeting level can be further reduced to 100dB if the dividing bar takes its optimal width 80mm, 15% of the total length of the sunroof for this vehicle, while staying at its optimal location.
Technical Paper

Self-Deployable Foam Antenna Structures for Earth Observation Radiometer Applications

2006-07-17
2006-01-2064
The overall goal of this program was the development of a 10 m. diameter, self-deployable antenna based on an open-celled rigid polyurethane foam system. Advantages of such a system relative to current inflatable or self-deploying systems include high volumetric efficiency of packing, high restoring force, low (or no) outgassing, low thermal conductivity, high dynamic damping, mechanical isotropy, infinite shelf life, and easy fabrication with methods amenable to construction of large structures (i.e., spraying). As part of a NASA Phase II SBIR, Adherent Technologies and its research partners, Temeku Technologies, and NASA JPL/Caltech, conducted activities in foam formulation, interdisciplinary analysis, and RF testing to assess the viability of using open cell polyurethane foams for self-deploying antenna applications.
Journal Article

Screening of Potential Biomass-Derived Streams as Fuel Blendstocks for Mixing Controlled Compression Ignition Combustion

2019-04-02
2019-01-0570
Mixing controlled compression ignition, i.e., diesel engines are efficient and are likely to continue to be the primary means for movement of goods for many years. Low-net-carbon biofuels have the potential to significantly reduce the carbon footprint of diesel combustion and could have advantageous properties for combustion, such as high cetane number and reduced engine-out particle and NOx emissions. We developed a list of over 400 potential biomass-derived diesel blendstocks and populated a database with the properties and characteristics of these materials. Fuel properties were determined by measurement, model prediction, or literature review. Screening criteria were developed to determine if a blendstock met the basic requirements for handling in the diesel distribution system and use as a blend with conventional diesel. Criteria included cetane number ≥40, flashpoint ≥52°C, and boiling point or T90 ≤338°C.
Technical Paper

Preliminary Development of a Suit Port for Planetary Surface EVA — Design Studies

2009-07-12
2009-01-2586
This paper present a summary of the design studies for the suit port proof of concept. The Suit Port reduces the need for airlocks by docking the suits directly to a rover or habitat bulkhead. The benefits include reductions in cycle time and consumables traditionally used when transferring from a pressurized compartment to EVA and mitigation of planetary surface dust from entering into the cabin. The design focused on the development of an operational proof of concept evaluated against technical feasibility, level of confidence in design, robustness to environment and failure, and the manufacturability. A future paper will discuss the overall proof of concept and provide results from evaluation testing including gas leakage rates upon completion of the testing program.
Technical Paper

Predicted vs. Actual Compensation in a Stamping Die

2001-10-16
2001-01-3108
Traditional methods used to produce a die set (from developing initial machining cutter paths through finalized die tryout to produce a part that meets design intent) begin with draw simulation and development. It is here, traditionally, that scientific evaluation of actual metal stretch and theoretical ideals end. In past programs, a designed part would be simulated for stretch and a development model created to include various die compensations (i.e. springback, overcrown, etc.) based on past experience for area and amount. At this point, the die is cut and undergoes a metamorphosis through die tryout to finally produce a quality part. This is currently an open loop system. This paper will focus on the differences in the predicted way the die should look and the actual outcome (after part buyoff).
Technical Paper

Optimization Study for Sunroof Buffeting Reduction

2006-04-03
2006-01-0138
This paper presents the results of optimization study for sunroof buffeting reduction using CFD technology. For an early prototype vehicle as a baseline model in this study a high level of sunroof buffeting 133dB has been found. The CFD simulation shows that the buffeting noise can be reduced by installing a wind deflector at its optimal angle 40 degrees from the upward vertical line. Further optimization study demonstrates that the buffeting peak SPL can be reduced to 97dB if the sunroof glass moves to its optimal position, 50% of the total length of the sunroof from the front edge. For any other vehicles, the optimization procedure is the same to get the optimal parameters. On the other hand, however, this optimization study is only based on fluid dynamics principle without considering manufacturability, styling, cost, etc. Further work is needed to utilize the results in the production design.
Technical Paper

Noise Environment Reduction Foam Spheres in Space

1989-09-01
892373
The advent of lightweight fairings for new spacecraft and the increased thrust of new launch vehicles have intensified the need for better techniques for predicting and for reducing the low frequency noise environment of spacecraft at lift-off. This paper presents a VAPEPS (VibroAcoustic Payload Environment Prediction System) parametrical analysis of the noise reduction of spacecraft fairings and explores a novel technique for increasing the low frequency noise reduction of lightweight fairings by approximately 10 dB.
Technical Paper

Nanoscale Materials for Human Spaceflight Applications: Regenerable Carbon Dioxide Removal Using Single-wall Carbon Nanotubes

2006-07-17
2006-01-2195
The challenges of missions to the Moon and Mars presents NASA with the need for more advanced life support systems, including better technologies for CO2 removal in spacecraft atmospheres and extravehicular mobility units (EMU). Amine-coated single wall carbon nanotubes (SWCNT) have been proposed as a potential solution because of their high surface area and thermal conductivity. Initial research demonstrated the need for functionalization of SWCNT to obtain optimal adherence of the amine to the SWCNT support phase [1]. Recent efforts focus on the development of new methods to chemically bond amines to SWCNT. Synthesis and characterization methods for these materials are discussed and some preliminary materials characterization data are presented. The CO2 adsorption capacity for several versions of SWCNT supported amine-based CO2 scrubber materials is also determined.
X