Refine Your Search

Topic

Author

Search Results

Technical Paper

“MBE 4000-A New Engine for the US Class 8 Truck Market”

2000-12-04
2000-01-3457
Due to ever soaring fuel costs and even more stringent emission regulations which require more elaborate technical efforts and unfortunately lead to a negative trend on fuel economy as well, todays and future trucking business is extremely challenged. These facts create an urgent requirement for the engine manufacturer to offer an engine with an optimized cost-benefit-ratio for the trucking business. Mercedes-Benz, as the leader in the European commercial vehicle market - of which e. g. high fuel costs, long maintenance intervals and high engine power-to-weight ratios have always been key characteristics - has developed a new class 8 engine for the US market. The MBE 4000 is a 6 cylinder inline engine in the compact size and low weight category, but due to its displacement of 12,8 liters it offers high performance characteristics like heavier big block engines.
Technical Paper

Vibro-acoustic FEA Modeling of Two Layer Trim Systems

2005-05-16
2005-01-2325
This paper investigates the potential of using FEA poro-elastic Biot elements for the modeling carpet-like trim systems in a simplified setup. A comparison between FEA computations and experiments is presented for two layer (mass-spring) trim systems placed on a test-rig consisting in a 510×354×1.6 mm flat steel plate clamped in a stiff frame excited at its base. Results are presented for a given heavy layer with two different poro-elastic materials: one foam and one fibrous material. The investigations included accelerometer measurements on the steel plate, laser-doppler vibrometer scans of the heavy layer surface, sound pressure measurements in free field at a distance of 1 meter above the plate, as well as sound pressure in a closed rectangular concrete-walled cavity (0.5×0.6×0.7 m) put on top of the test-rig. Computations were carried out using a commercial FEA software implementing the Biot theory for poro-elastic media.
Technical Paper

Validation of Eulerian Spray Concept coupled with CFD Combustion Analysis

2007-09-16
2007-24-0044
The main objective of engine 3D CFD simulation is nowadays the support for combustion design development. New combustion concepts (e.g. Low Temperature Combustion, HCCI, multiple injection strategies …) could be analyzed and predicted through detailed thermodynamical computation. To achieve this aim many simulation tools are needed: each of them has to be capable to reproduce the sensitivities of combustion design parameters through physically based models. The adopted approach consists of the coupling of different models for 3D-nozzle flow, orifice-resolved spray formation in Eulerian coordinates and combustion. The advantages of the method will be proofed on an operative DI-diesel truck engine case, run with different nozzle geometries.
Technical Paper

Underhood Temperature Analysis in Case of Natural Convection

2005-05-10
2005-01-2045
This paper describes a method to simulate underhood temperature distributions in passenger cars. A simplified engine compartment simulation test rig is used to perform measurements with well known boundary conditions to validate the simulation strategy. The measurement setup corresponds to idle without working fan. The aim of this setup is to validate cases with strong natural convection, e.g. thermal soaking. A coupled steady-state CFD run and thermal analysis is undertaken to simulate the temperature distribution in the test rig. Convective heat transfer coefficients and air temperatures are calculated in StarCD™. The radiative and conductive heat transfer is considered in a RadTherm™ analysis. The strong coupling of flow field and wall temperature in buoyancy driven flows requires an iterative process. Calculated temperatures are compared to measured results in order to validate the simulation method as far as possible. Some of the results are reported in this paper.
Technical Paper

The Vision of a Comprehensive Safety Concept

2001-06-04
2001-06-0252
A look at the various past achievements in the field of passenger car safety raises the question whether any dramatic steps towards its improvement can still be expected. Will progress be confined to the optimization of existing systems or does the future hold new substantial safety steps? This paper elaborates on the issue that the time available before a potential accident occurs can be used to improve the safety of occupants and other involved road users. Accident analysis confirms that this is feasible for about two-thirds of all accidents. The recognition of an imminent collision bears a noteworthy potential for accident prevention, reduction of accident severity and injury severity. The former boundary between active and passive safety thus fades continually. Based upon this it is possible to describe vehicle safety by a comprehensive approach encompassing seven escalation levels.
Technical Paper

The Integration of Cad/Cam/Cae Based on Multi-Model Technology in the Development of Cylinder Head

2000-06-12
2000-05-0192
The integration of CAD/CAM/CAE in product development is the key to realize concurrent engineering. Generally, different systems are employed in product development department. These different systems create a lot of troubles such as difficult communication, misunderstanding and so on. A new approach to integrate CAD/CAM/CAE in one system based on CATIA for the end-to-end process in cylinder head development is presented. Multi-Model Technology (MMT) is used to create consistent and associated CAD models for the end-to-end process in cylinder head development. The concept and method to create and organize multi- models are discussed. A typically four-layer structure of MMT for mechanical products is defined. The multi-level structure of the cylinder head models based on MMT is provided. The CAD models of cylinder head created based on MMT can be used as the consistent model.
Technical Paper

The Influence of Rotating Wheels on Vehicle Aerodynamics - Numerical and Experimental Investigations

2007-04-16
2007-01-0107
Investigations of the aerodynamic influence of rotating wheels on a simplified vehicle model as well as on a series production car are presented. For this research CFD simulations are used together with wind tunnel measurements like LDV and aerodynamic forces. Several wheel rim geometries are examined in stationary and in rotating condition. A good agreement could be achieved between CFD simulations and wind tunnel measurements. Based on the CFD analysis the major aerodynamic mechanisms at rotating wheels are characterized. The flow topology around the wheels in a wheel arch is revealed. It is shown, that the reduction of drag and lift caused by the wheel rotation on the isolated wheel and the wheel in the wheel arch are based on different effects of the airflow. Though the forces decrease at the front wheel due to the wheel rotation locally, the major change in drag and lift happens directly on the automotive body itself.
Technical Paper

The Impact of High Cell Density Ceramic Substrates and Washcoat Properties on the Catalytic Activity of Three Way Catalysts

1999-03-01
1999-01-0272
The present paper describes the results of a joint development program focussing on a system approach to meet the EURO IV emission standards for an upper class passenger car equipped with a newly developed high displacement gasoline engine. Based on the well known catalyst systems of recent V6- and V8-engines for the EURO III emission standards with a combination of close coupled catalysts and underfloor catalysts, the specific boundary conditions of an engine with an even larger engine displacement had to be considered. These boundary conditions consist of the space requirements in the engine compartment, the power/torque requirements and the cost requirements for the complete aftertreatment system. Theoretical studies and computer modeling showed essential improvements in catalyst performance by introducing thin wall substrates with low thermal inertia as well as high cell densities with increased geometric surface area.
Technical Paper

Study of a Sintered Metal Diesel Particulate Trap

2005-04-11
2005-01-0968
This paper describes work supporting the development of a new Diesel particulate trap system for heavy duty vehicles based on porous sintered metal materials that exhibit interesting characteristics with respect to ash tolerance. Experimental data characterizing the material (permeability, soot and ash deposit properties) are obtained in a dedicated experimental setup in the side-stream of a modern Diesel engine as well as in an accelerated ash loading rig. System level simulations coupling the new media characteristics to 3-D CFD software for the optimization of complete filter systems are then performed and comparative assessment results of example designs are given.
Technical Paper

Simulation of a Vehicle Refrigeration Cycle with Dymola/Modelica

2005-04-11
2005-01-1899
Development times in the automotive industry are becoming increasingly shorter. For this reason, design decisions based on simulation results must be made at an early development stage. The dynamic simulation of an automotive refrigeration cycle with Dymola/Modelica as part of the design process will be described in the following paper. The component supplier's expertise as well as the automotive manufacturer's knowledge of vehicle parameters in one simulation platform will also be discussed.
Technical Paper

Simulation Of NOx Storage and Reduction Catalyst: Model Development And Application

2007-04-16
2007-01-1117
To fulfill future emission standards for diesel engines, combined after-treatment systems consisting of different catalyst technologies and diesel particulate filters (DPF) are necessary. For designing and optimizing the resulting systems of considerable complexity, effective simulation models of different catalyst and DPF technologies have been developed and integrated into a common simulation environment called ExACT (Exhaust After-treatment Components Toolbox). This publication focuses on a model for the NOx storage and reduction catalyst as a part of that simulation environment. A heterogeneous, spatially one-dimensional (1D), physically and chemically based mathematical model of the catalytic monolith has been developed. A global reaction kinetic approach has been chosen to describe reaction conversions on the washcoat. Reaction kinetic parameters have been evaluated from a series of laboratory experiments.
Technical Paper

Powernet Simulation as a Tool for the Development of a Highly Reliable Energy Supply for Safety Relevant Control Systems in X-By-Wire Vessels in the EU SPARC Project

2006-04-03
2006-01-0115
The EU SPARC Project (Secure Propelled Vehicle with Advanced Redundant Control) has developed a new system architecture that enables effective application of driver assisted systems in an X-by-wire powertrain. A major challenge in the conception of such a system is development of a reliable electrical energy supply. A simulation is the most important tool for enabling the fundamental aspects to work, as for example, a dimensioning of the powernet. This article explains our approach in this SPARC simulation. We provide suggestions through examples of how to find simulation solutions for powernet dimensioning, as well as for the conception and validation of energy management strategies.
Technical Paper

Potential of Synthetic Fuels in Future Combustion Systems for HSDI Diesel Engines

2006-04-03
2006-01-0232
In view of limited crude oil resources, alternative fuels for internal combustion engines are currently being intensively researched. Synthetic fuels from natural gas offer a promising interim option before the development of CO2-neutral fuels. Up to a certain degree, these fuels can be tailored to the demands of modern engines, thus allowing a concurrent optimization of both the engine and the fuel. This paper summarizes investigations of a Gas-To-Liquid (GTL) diesel fuel in a modern, post-EURO 4 compliant diesel engine. The focus of the investigations was on power output, emissions performance and fuel economy, as well as acoustic performance, in comparison to a commercial EU diesel fuel. The engine investigations were accompanied by injection laboratory studies in order to assist in the performance analyses.
Technical Paper

Optimization and Minimization of Boundary Mannequins

2005-06-14
2005-01-2736
Boundary mannequin is an important concept in digital human modeling and simulation, yet complicated to deal with and utilize. In theory, the number of boundary mannequins could be as much as (n!)2n for a single gender, where n is the number of critical anthropometric dimensions. It has been recommended [1] to break a complicated task into smaller tasks to reduce the scale of problem, and limit n=2 whenever possible. Even then, the number of boundary mannequins is still high for simulations. In this paper, the authors intend to further simplify the issue. An Excel worksheet is created for the purpose. The input can be as few as two points. An ellipse representing the boundary is automatically generated through regression analysis, and the extremes on the major and minor axes of the ellipse are then obtained, and taken as the optimal boundary mannequins.
Technical Paper

Numerical Study of the Influence of Air Vent Area and Air Mass Flux on the Thermal Comfort of Car Occupants

2000-03-06
2000-01-0980
In the present paper, first results of an extensive and ongoing parametric study are shown. The objective of the parametric study is to clarify the influence of relevant flow and geometrical parameters on the microclimate and thermal comfort of the occupants. Flow parameters included in the study are air mass fluxes, velocity magnitude, air temperature and inflow direction at the vents. Geometrical parameters of interest are number, location, area and shape of the air vents as well as geometrical details of the passenger compartment itself. The parametric study is performed numerically on the basis of a computational model for a passenger compartment of a Mercedes E-Class sedan. The numerical method used has been published earlier and consists of a system of three programs for simulating the flow and temperature field in the cabin, the heat transfer and radiation and the thermal sensation of the occupants.
Technical Paper

Numerical Simulation of NO/NO2/NH3 Reactions on SCR-Catalytic Converters:Model Development and Applications

2006-04-03
2006-01-0468
A 1D+1D numerical model describing the ammonia based SCR process of NO and NO2 on vanadia-titania catalysts is presented. The model is able to simulate coated and extruded monoliths. Basing on a fundamental investigation of the catalytic processes a reaction mechanism for the NO/NO2 - NH3 reacting system is proposed and modeled. After the parameterization of the reaction mechanism the reaction kinetics have been coupled with models for heat and mass transport. Model validation has been performed with engine test bench experiments. Finally the model has been applied to study the influence of NO2 on SCR efficiency within ETC and ESC testcycles, Additional simulations have been conducted to identify the potential for catalyst volume reduction if NO2 is present in the inlet feed.
Technical Paper

Numerical Simulation of Ammonia SCR-Catalytic Converters: Model Development and Application

2005-04-11
2005-01-0965
A two-dimensional numerical model describing the ammonia based SCR-process on vanadia-titania catalysts is presented. The model is able to simulate coated and extruded monoliths. For the determination of the intrinsic kinetics of the various NH3-NOx reactions, unsteady microreactor experiments were used. In order to account for the influence of transport effects the kinetics were coupled with a fully transient two-phase 1D+1D monolith channel model. The model has been validated extensively with laboratory data and engine test bench measurements. After validation the model has been applied to calculate catalyst NOx conversion maps, which were used to define catalyst sizes. Additional simulations were conducted studying the influence of cell density and NH3-dosage ratio.
Technical Paper

Numerical Analysis of the Flow Over Convertibles

2001-05-14
2001-01-1762
In the present study, the exterior air flow over convertibles together with the interior flow in the passenger compartment has been calculated using the commercial CFD program STAR-CD. The investigations have been performed for a SLK-class Mercedes with two occupants. The computational mesh consists of about 3 million hexahedra cells. The detailed informations of the calculated flow field have been used to elaborate the characteristic flow phenomena and increase the physical understanding of the flow. The influence of different geometrical modifications (variations of roof spoiler, variations of the draft stop behind the seats etc.) on the flow field and the air draft experienced by the occupants has been analyzed. To proof the accuracy of the numerical results, wind tunnel experiments in a full scale and 1:5 scale wind tunnel have been carried out for the basic car model as well as for several geometrical variations.
Technical Paper

Multidimensional Optimization of In-Cylinder Tumble Motion for the New Chrysler Hemi

2002-05-06
2002-01-1732
The current is an investigation of the effects of charge motion, namely tumble, on the burn characteristics of the new Chrysler Hemi SI engine. In order to reduce prototyping, several combustion system designs were evaluated; some of which were eliminated prior to design inception solely based on CFD simulations. The effects of piston top and number of spark plugs were studied throughout the conceptual stage with the AVL-FIRE CFD code. It has been concluded that large-scale, persistent and coherent tumbling flow structures are essential to charge motion augmentation at ignition only if such structures are decimated right before ignition. Piston top had a detrimental effect on tumbling charge motion as the piston approaches the TDC. When compared to single spark plug operation, dual spark plug reflected considerable improvement on burn characteristics and engine performance as a consequence. The CFD simulations demonstrated good correlation with early dynamometer data.
Technical Paper

LS-DYNA 3D Interface Component Analysis to Predict FMVSS 208 Occupant Responses

2003-03-03
2003-01-1294
Today's interior systems engineer has been challenged with providing cost-effective instrument panel design solutions to meet NHTSA's new FMVSS 208 front crash regulations. Automotive manufacturers are in continuous search of newer methods and techniques to reduce prototype tests and cost. Analytical methods of predicting occupant and structural behavior using computer-aided engineering (CAE) analysis has been in place for quite some time. With the new FMVSS 208 regulations requiring both 5th and 50th percentile occupant testing, CAE analysis of predicting occupant response has become increasingly important. The CAE analyst is challenged with representing the barrier test condition, which involves the structure and the occupant moving at velocities of 25, 30 and 35 mph. Representing the cab kinematics in high-speed impacts is crucial, since capturing the vehicle intrusion and pitching should be made part of the input variables.
X