Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Torque Converter CFD Engineering Part II: Performance Improvement through Core Leakage Flow and Cavitation Control

2002-03-04
2002-01-0884
The performance of a large-volume production torque converter is slightly different from those of development prototype due to the core leakage flow. The sealing gap between the stator crown and pump or turbine core of the production converter is usually larger than that of prototypes because of fabrication method and tolerances. In this work, the core leakage flow of torque converter was investigated using CFD. The core region was modeled and coupled together with other three major components of a converter. Studies show that for a particular converter the core leakage flow could result in a 3.6% stall torque ratio reduction and a 2% peak efficiency decrease. The effects of sealing gap dimensions were also studied. Computational investigations in this work indicated that the variation of input K factor with input torque level observed in dyno tests is due to the cavitation in the torque converter.
Technical Paper

Torque Converter CFD Engineering Part I: Torque Ratio and K Factor Improvement Through Stator Modifications

2002-03-04
2002-01-0883
To improve vehicle launch feeling, the powertrain torque output needs to be largely increased. Compared with modifications to engine, transmission, and axle, one of the most inexpensive ways of achieving this goal is to modify the torque converter to get a higher stall torque ratio. In other applications, in order to lower engine speed for better fuel economy, and to match with a higher output engine, a converter with higher torque capacity (lower K factor) is also often desired. In some case of small-volume production, the torque converter modifications are limited to the stator only in order to reduce the manufacturing cost. In the present study, the engineering CFD simulations were used to develop new stators for stall torque ratio and K factor improvement. The flow fields of both baseline and modified torque converters were simulated. The overall performances of the converter were calculated from the flow field data, and correlated with the dyno test data.
X