Refine Your Search

Search Results

Viewing 1 to 8 of 8
Technical Paper

Torque Converter CFD Engineering Part II: Performance Improvement through Core Leakage Flow and Cavitation Control

2002-03-04
2002-01-0884
The performance of a large-volume production torque converter is slightly different from those of development prototype due to the core leakage flow. The sealing gap between the stator crown and pump or turbine core of the production converter is usually larger than that of prototypes because of fabrication method and tolerances. In this work, the core leakage flow of torque converter was investigated using CFD. The core region was modeled and coupled together with other three major components of a converter. Studies show that for a particular converter the core leakage flow could result in a 3.6% stall torque ratio reduction and a 2% peak efficiency decrease. The effects of sealing gap dimensions were also studied. Computational investigations in this work indicated that the variation of input K factor with input torque level observed in dyno tests is due to the cavitation in the torque converter.
Technical Paper

Torque Converter CFD Engineering Part I: Torque Ratio and K Factor Improvement Through Stator Modifications

2002-03-04
2002-01-0883
To improve vehicle launch feeling, the powertrain torque output needs to be largely increased. Compared with modifications to engine, transmission, and axle, one of the most inexpensive ways of achieving this goal is to modify the torque converter to get a higher stall torque ratio. In other applications, in order to lower engine speed for better fuel economy, and to match with a higher output engine, a converter with higher torque capacity (lower K factor) is also often desired. In some case of small-volume production, the torque converter modifications are limited to the stator only in order to reduce the manufacturing cost. In the present study, the engineering CFD simulations were used to develop new stators for stall torque ratio and K factor improvement. The flow fields of both baseline and modified torque converters were simulated. The overall performances of the converter were calculated from the flow field data, and correlated with the dyno test data.
Technical Paper

Tools for Occupant Protection Analysis

2001-11-12
2001-01-2725
The design of occupant restraint systems in the automotive industry has shifted from an empirical approach to a computer aided analysis approach for many years now. Various finite element software programs have been applied in crash safety analysis, and multi-body dynamics codes have been successfully used where quick system response times were required. Most new vehicle programs are analyzed by the use of finite element tools that were used for previous program projects. Software that has specific occupant protection features may be coupled with these finite element tools, or new vehicle programs may be developed from scratch by using one tool that does all, i.e. a tool where the multi-body dynamics are integrated into the finite element method. Both these approaches will be elaborated as valid tools for occupant protection analysis. At first, the coupling between the finite element crash program LS-DYNA and the F.E.
Technical Paper

The Methods Used for Die Certification and Die Repeatability Evaluation

1999-09-28
1999-01-3217
An assessment of stamped part quality and launch readiness occurs at many intervals. This paper will focus on dimensional control activities that take place after Stamping Dies are constructed, but prior to producing the stamped parts. Die certification and die repeatability measurements have been performed at DaimlerChrysler and the results are documented. This die certification process provides an opportunity to uncover and resolve die machining issues with respect to the part math model or pre-engineered compensation model prior to producing parts. Additionally, the die repeatability process is performed to determine the ability of the die gaging to locate the incoming in-process material consistently. This paper will explain the die certification and die repeatability processes and share what we have learned. It will describe the processes, the tools, the participants, the sites, the benefits, and the measurement equipment.
Technical Paper

Pump Noise Reduction Using Shainin Statistical Engineering Methods

2001-04-30
2001-01-1542
Historically, pump noise can be a contributor to customer dissatisfaction with automatic transmissions. In this paper, a Shainin experiment was conducted to identify all probable root causes for pump noise on a production RWD transmission. Sample transmissions were selected following subjective evaluations. Noise was objectively measured in the lab using a microphone and an accelerometer. The study was conducted following a systematic Shainin statistical engineering methodology, which included the following major steps: selection of the test measure using the isoplot technique, selection of Best of Best (BOB) and Worst of Worst (WOW) transmissions, assessment of assembly variation, component search, and pair-wise comparisons. The study successfully highlighted the key variables on the drive gear involute profile, which are now being tightly controlled for improved noise characteristics.
Technical Paper

Managing Regulatory Content

2001-03-05
2001-01-1084
Managing regulatory content is a complex process for any industry, but particularly for the automotive industry, which is heavily regulated. Several approaches for managing content are discussed along with implications for the industry. The response of an Original Equipment Manufacturer (OEM) to the recent European Parliament End-of-Life Vehicle Directive (EU 2000/53/EC-ELVs)1 is discussed from a North American perspective as well as trickle down expectations for the automotive supply base. Design, sourcing and labeling issues associated with the ELV directive as well as domestic regulations are discussed.
Technical Paper

Design and Development of the DaimlerChrysler 5.7L HEMI® Engine Multi-Displacement Cylinder Deactivation System

2004-05-07
2004-01-2106
Cylinder deactivation is a means of improving the fuel economy of gasoline engines. This paper covers the application of the technology to a V8 engine and implementation into vehicles. The description of the engine hardware and its operation are discussed. The engine and transmission control strategy are described, including an example of the compensation strategies to smooth the transition between the different modes of engine operation. The powertrain and chassis hardware changes required to address the noise vibration and harshness issues are discussed and examples of untuned systems are shown.
Technical Paper

Design Kit for Accessory Drives (DKAD): Dynamic Analysis of Serpentine Belt Drives

2003-05-05
2003-01-1661
DKAD is an automated analysis tool for evaluating dynamic characteristics of accessory drives. Rotation response analysis predicts natural frequencies and effects of crankshaft excitation. Lateral response of each belt span shows the effect of pulley run-out and parametric excitation. DKAD systematically allows a user to define a design and its operating conditions and then performs a sequence of analysis to visualize the rotational and lateral responses. It also allows a user to quickly explore and assess alternative designs. Belt layout and associated parameters can be saved in templates for future reference.
X