Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Vibro-Acoustic Behavior of Bead-Stiffened Flat Panels: FEA, SEA, and Experimental Analysis

1999-05-17
1999-01-1698
Vibration and sound radiation characteristics of bead-stiffened panels are investigated. Rectangular panels with different bead configurations are considered. The attention is focused on various design parameters, such as orientation, depth, and periodicity, and their effects on equivalent bending stiffness, modal density, radiation efficiency and sound transmission. A combined FEA-SEA approach is used to determine the response characteristics of panels across a broad frequency range. The details of the beads are represented in fine-meshed FEA models. Based on predicted surface velocities, Rayleigh integral is evaluated numerically to calculate the sound pressure, sound power and then the radiation efficiency of beaded panels. Analytical results are confirmed by comparing them with experimental measurements. In the experiments, the modal densities of the panels are inferred from averaged mechanical conductance.
Technical Paper

Versatile Occupant Analysis Model (V.O.A.M) for Frontal Impacts Using LS-DYNA and MADYMO

2005-04-11
2005-01-1000
Regulations implemented by safety commissions throughout the world have resulted in extensive physical testing to protect the occupants during frontal impact events. Significant prototype and test costs aimed at optimizing structure and restraint systems are associated with meeting these regulations. To help reduce development costs, Computer Aided Engineering (CAE) is often applied. LS-DYNA [1] coupled with MADYMO [2] is widely used in crash and occupant safety simulation. An analysis technique which utilized a single model to design and optimize interiors (instrument panel, seats, visor, steering wheel, steering column) and restraints (airbag, seatbelts, retractor, pre-tensioner) was developed. The single model concept captures the global structural kinematics through minimal vehicle representation. Global vehicle modes such as pitch and roll can be represented by applying prescribed motion boundary conditions extracted from full vehicle models.
Technical Paper

Vehicle Speed Prediction for Driver Assistance Systems

2004-03-08
2004-01-0170
A predictive automatic gear shift system is currently under development. The system optimizes the gear shift process, taking the conditions of the road ahead into account, such that the fuel consumption is minimized. An essential part of the system is a module that predicts the vehicle speed dynamics: This calculates a speed trajectory, i.e. the most probable vehicle speed the driver will desire for the upcoming section of the route. In the paper the theoretical background for predicting the vehicle speed, and simulation results of the predictive shift algorithm are presented.
Technical Paper

Vehicle Pulse Shape Optimization to Improve Occupant Response in Front Impact

2004-03-08
2004-01-1625
This paper presents a new approach to improve occupant response in a front impact event. Instead of designing a vehicle structure for maximum structural efficiency and safety and then engineer a restraint system for the vehicle, this paper proposes to use a systems approach. In this approach, the vehicle structural response during impact (i.e., pulse) and the restraint system are considered together in the optimization process. In this paper, the 35 mph front impact into a rigid barrier with belted occupants, which is the NHTSA NCAP test, will be used to demonstrate the proposed new approach.
Technical Paper

Vehicle Cradle Durability Design Development

2005-04-11
2005-01-1003
In this paper, cradle design functional objectives are briefly reviewed and a durability development process is proposed focusing on the cradle loads, stress, strain, and fatigue life analysis. Based upon the proposed design process, sample isolated and non-isolated cradle finite element (FE) models for a uni-body sport utility vehicle (SUV) under different design phases are solved and correlated with laboratory bench and proving ground tests. The correlation results show that the applied cradle models can be used to accurately predict the critical stress spots and fatigue life under various loading conditions.
Technical Paper

Using Artificial Neural Networks for Representing the Air Flow Rate through a 2.4 Liter VVT Engine

2004-10-25
2004-01-3054
The emerging Variable Valve Timing (VVT) technology complicates the estimation of air flow rate because both intake and exhaust valve timings significantly affect engine's gas exchange and air flow rate. In this paper, we propose to use Artificial Neural Networks (ANN) to model the air flow rate through a 2.4 liter VVT engine with independent intake and exhaust camshaft phasers. The procedure for selecting the network architecture and size is combined with the appropriate training methodology to maximize accuracy and prevent overfitting. After completing the ANN training based on a large set of dynamometer test data, the multi-layer feedforward network demonstrates the ability to represent air flow rate accurately over a wide range of operating conditions. The ANN model is implemented in a vehicle with the same 2.4 L engine using a Rapid Prototype Controller.
Technical Paper

Turbocharging the Chrysler 2.4L Engine

2003-03-03
2003-01-0410
A turbocharged version of the 2.4L engine has been developed by the Chrysler Group of DaimlerChrysler Corporation. This new engine is derived from the proven 2.4L 4-cylinder, with significant changes to achieve a durable, high performance package for the PT Cruiser vehicle. The package includes an integrated turbocharger / exhaust manifold, oil squirters for piston cooling, and numerous other upgrades to satisfy the demanding performance, emissions, and durability requirements unique to this powertrain. The purpose of this paper is to describe the mechanical changes to the base engine, the unique turbocharger configuration, and the new parts necessary to accommodate the higher output.
Technical Paper

Truck Frame Motion Prediction and Correlation

2006-04-03
2006-01-1257
Accurate motion prediction can be used to evaluate vibrations at seat track and steering wheel. This paper presents the prediction and correlation of truck frame motion from wheel force transducer (WFT) measurements. It is assumed that the method can be used to predict vibrations at seat track and steering wheel for unibody vehicles. Two durability events were used for calculation. WFT measurements were used as inputs applied on frame from suspension. Frame loads were then used as inputs to calculate frame motions using a FEA approach. The predicted frame motions are represented by four exhaust hangers and they are compared with measured motions of the same locations. The correlations include displacement, velocity, and acceleration. It is shown that good correlations are obtained in velocity and displacement. Acceleration shows bigger differences than velocity and displacement.
Technical Paper

Truck Body Mount Load Prediction from Wheel Force Transducer Measurements

2005-04-11
2005-01-1404
This paper introduces a reliable method to calculate body mount loads from wheel-force-transducer (WFT) measurements on framed vehicles. The method would significantly reduce time and cost in vehicle development process. The prediction method includes two parts: Hybrid Load Analysis (HLA) that has been used by DaimlerChrysler Corporation and Body Mount Load Analysis (BMLA) that is introduced by this paper for the first time. The method is validated on a body-on-frame SUV and a pickup truck through one proving ground events. The example shown in this paper is for a SUV and one of the most severe events. In HLA, the loads at suspension-to-frame attachments are calculated from spindle loads measured by WFT. In BMLA, body mount loads were calculated using outputs of HLA with detailed finite-element-modeled frame and body. The loads are compared with measured body mount loads. The comparisons are conducted in range, standard deviation (S.D.), and fatigue pseudo-damage.
Technical Paper

Transmission Mount Assembly Modelling for Load Simulation and Analysis

2007-04-16
2007-01-1348
Transmission mounts are usually tested as an assembly and typically only translational stiffnesses are provided. The torsional stiffness of the assembly is traditionally estimated based on experience in load simulation and analysis. This paper presents a procedure to estimate the torsional stiffness of the transmission mount assembly by using the test data. The effects of the torsional stiffness on the simulation results are also discussed.
Technical Paper

Three Dimensional Position Measurement using String-pots

2005-04-11
2005-01-1419
It is often necessary to measure three-axis displacement of a deforming or moving part in static or dynamic impact tests. A point moving in the three-dimensional space can be monitored and measured using three string-pots or other distance measuring devices with a methodology developed here. A numerical algorithm along with required equations are shown and discussed. The algorithm was applied as an example to static seat pull test and compared to results from film analysis. The application with string pots is useful especially when the point of concern gets hidden or blocked by other parts disabling the photogrammetry technology.
Technical Paper

The New DaimlerChrysler Corporation 5.7L HEMI® V8 Engine

2002-10-21
2002-01-2815
For the 2003 model year DaimlerChrysler Corporation (DCC) will introduce an all-new 5.7L V8 truck engine manufactured at the new Saltillo II Engine Plant (SEPII) in Saltillo, Mexico. The product will debut in the new RAM series of pick-up trucks and marks the return of the hemispherical combustion chamber architecture. This paper covers the engine design features, simulation methods, development, and manufacturing processes. Also reviewed are the project objectives and the organizational processes used to manage and deliver the program.
Technical Paper

The DaimlerChrysler Full-Scale Aeroacoustic Wind Tunnel

2003-03-03
2003-01-0426
This paper provides an overview of the design and commissioning results for the DaimlerChrysler full-scale vehicle Aeroacoustic Wind Tunnel (AAWT) brought online in 2002. This wind tunnel represents the culmination of the plan for aeroacoustic facilities at the DaimlerChrysler Corporation Technical Center (DCTC) in Auburn Hills, Michigan. The competing requirements of excellent flow quality, low background noise, and constructed cost within budget were optimized using Computational Fluid Dynamics, extensive acoustic modeling, and a variety of scale-model experimental results, including dedicated experiments carried out in the 3/8-scale pilot wind tunnel located at DCTC. The paper describes the project history, user requirements, and design philosophy employed in realizing the facility. The AAWT meets all of DaimlerChrylser's performance targets, and was delivered on schedule. The commissioning results presented in this paper show its performance to be among the best in the world.
Technical Paper

Testing Elastomers - Can Correlation Be Achieved Between Machines, Load Cells, Fixtures and Operators?

2001-04-30
2001-01-1443
At present, testing elastomeric parts is performed at a level dictated by the users of the testing equipment. No society or testing group has defined a formal standard of testing or a way to calibrate a testing machine. This is in part due to the difficulty involved with testing a material whose properties are in a constant state of flux. To further complicate this issue, testing equipment, testing procedures, fixtures, and a host of other variables including the operators themselves, all can have an impact on the characterization of elastomers. The work presented in this paper looks at identifying some of the variables of testing between machines, load cells, fixtures and operators. It also shows that correlation can be achieved and should be performed between companies to ensure data integrity.
Technical Paper

Techniques to Improve Springback Prediction Accuracy Using Dynamic Explicit FEA Codes

2002-03-04
2002-01-0159
Finite Element Analysis (FEA) has been successfully used in the simulation of sheet metal forming process. The accurate prediction of the springback is still a major challenge due to its sensitivity to the geometric modeling of the tools, strain hardening model, yield criterion, contact algorithm, loading pattern, element formulation, mesh size and number of through-thickness integration points, etc. The objective of this paper is to discuss the effect of numerical parameters on springback prediction using dynamic explicit FEA codes. The example used in the study is from the Auto/Steel Partnership High Strength Steel Rail Springback Project. The modeling techniques are discussed and the guidelines are provided for choosing numerical parameters, which influence the accuracy of the springback prediction and the computation cost.
Technical Paper

TPE Radiator Components from Post Consumer Tires

2001-11-12
2001-01-3763
Over 250 million tires are scrapped in the United States each year. Tires have been a problematic scrap because they have been designed to resist destruction, and have a tendency to float upwards in landfills. Improper storage has resulted in tire fires1--an even more problematic environmental concern than unsightly piles which can serve as breeding grounds for insect vectors. A better solution is to recover materials for use in new components. Not only does this resolve the landfill issue, but it also serves to conserve resources, while returning an economic benefit to society. This paper traces the introduction of tire material recovery at NRI Industries and DaimlerChrysler Corporation (DCC), the development of the infrastructure and materials, and the launch of the Jeep Grand Cherokee thermoplastic elastomer (TPE) radiator seals, comprised of post consumer tire crumb.
Technical Paper

Suspension Tuning Parameters Affecting Impact Harshness Performance Evaluation

2006-04-03
2006-01-0991
In this paper, a comprehensive evaluation index for impact harshness (IH) is proposed. A mid-sized uni-body SUV is selected for this study, with the acceleration responses at the various vehicle body locations as objective functions. A sensitivity study is conducted using an ADAMS full vehicle model with flexible body structure representation over an IH event to analyze the influence of various suspension tuning parameters, including suspension springs, shock damping, steer gear ratio, unsprung mass, track-width, and bushing stiffness.
Technical Paper

Study on Simplified Finite Element Simulation Approaches of Fastened Joints

2006-04-03
2006-01-1268
In this paper, mechanism of fastened joints is described; numerical analyses and testing calibrations are conducted for the possible simplified finite element simulation approaches of the joints; and the best simplified approach is recommended. The approaches cover variations of element types and different ways that the joints are connected. The element types include rigid elements, deformable bar elements, solid elements, shell elements and combinations of these element types. The different ways that the joints are connected include connections of one row of nodes, two row of nodes and alternate nodes in the first and second rows. These simplified simulation approaches are numerically evaluated on a joint of two plates connected by a single fastener. The fundamental loads, bending with shear, shear and tension are applied in the numerical analyses. A detailed model including contact and clamp load are analyzed simultaneously to provide “accurate results”.
Technical Paper

Structure Borne Insertion Loss of Sound Package Components

2003-05-05
2003-01-1549
Typical automotive sound package components are usually characterized by their absorption coefficients and their acoustic power-based insertion loss. This insertion loss (IL) is usually obtained by subtracting the transmission loss (TL) of a bare flat steel plate from the TL of the same plate covered with the trim material. While providing useful information regarding the performance of the component, air-borne insertion loss is based solely on acoustic excitations and thus provides very little information about the structure-borne performance of the component. This paper presents an attempt to introduce a standard procedure to define the power-based structure-borne insertion loss of sound package components. A flat steel plate is excited mechanically using a shaker. Different carpet constructions are applied on the plate and tested. Based on velocity measurements, a force transducer and intensity probe, the mechanical input and the acoustic radiated power are obtained.
Technical Paper

Strength Prediction and Correlation of Tow Hook Systems using Finite Element Analyses

2007-04-16
2007-01-1206
In this paper, tow hook systems and their functional objectives are briefly introduced. General analysis considerations in strength prediction of a tow hook system are described. These considerations contain nonlinear, clamping and material property simulations. Connections and loading simulation of a tow hook system model are discussed in details. A correlation example of a tow hook system is illustrated. This study shows that detailed modeling of a tow hook system is a fundamental requirement for accurate strength prediction and good correlation between finite element analysis and testing.
X