Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Reduced Instruction Set Computers Versus Complex Instruction Set Computers for Gasket Finite Element Analysis

1992-09-01
921706
The intent of this paper will be to address the level of performance and cost of the various complex instruction set computers (CISC-80X86) versus the reduced instruction set computers (RISC). The original concept of reduced instruction set computers will be explained. The above information will be contrasted with how the second generation system functions. Once the operations are established, a discussion of operating performance as related to several types of benchmarks will be cited. A typical FEA model will be used as the final benchmark to determine realistic performance versus speed (wall clock time). The final comparison will be of cost.
Technical Paper

Finite Element Modeling Spur and Helical Gears in Contact

1992-11-01
922440
Designing highly loaded spur and helical gears for truck transmissions that are both strong and quiet requires an analysis method that can easily be implemented and also provides information on bending stress, load distribution, and transmission error. The finite element method is capable of providing this information, but the time needed to create such a model is very great. In order to reduce the modeling time, a preprocessor program that creates the geometry needed for a finite element analysis has been developed. While requiring a minimum of user input, the program generates a three-dimensional model of contacting spur or helical gears using eight node brick elements. Gap elements are used to model the contact that normally occurs between meshing gear teeth as well as the contact that may occur off the line of action due to the teeth deflecting under load.
Technical Paper

Design of a Pusher for a Crimp Using Finite Element Shape Optimization

1998-09-14
982060
Design analysts, who work with finite element shape optimization, face a daunting task of handling cylindrical parts like a pusher for a crimp. The shape vectors generated by any of the existing methods/tools cannot constrain nodes to move in a circular path. Since the pusher is not a complete cylinder and the loading is only along axial direction, shape optimization was performed after flattening out the cylindrical pusher. The existing shape optimization tools could now be applied to the flat plate. A numerical interpolation method, based on ‘Autodv’, has been used to generate shape vectors. Both weight and stresses have been brought down and the final design was verified with solid finite element analysis.
Technical Paper

Design and Development of New Spicer S400-S Tandem Axle

1995-11-01
952667
The design objective of the Spicer S400-S axle program was to develop a light weight, lower torsional vibration, long life tandem drive axle for the heavy truck industry. This was accomplished with the incorporation of a number of new product features and technical advancements, both in design and manufacturing. These include: reduced standouts for improved interaxle driveline angles use of finite element analysis fixed pinion mounting optimization of lube flow and direction of lubrication optimized gear design for improved strength and noise reduction. This paper focuses on these features and also on the development process for the axle, including the use of simultaneous engineering. Utilizing simultaneous engineering, the S400-S was developed from concept to full production in fifteen months.
X