Refine Your Search

Search Results

Viewing 1 to 11 of 11
Technical Paper

The Limitations of Fatigue Testing

Fatigue testing of components is used to validate new product designs as well as changes made to existing designs. On new designs it is common to initially test parts at the design stage (design verification or DV) and then again at the production stage (production verification or PV) to make sure the performance has not changed. On changes to existing designs typically the life of the new part (B) is compared to that of the old part (A). When comparing the fatigue life Weibull analysis is normally used to evaluate the data. The expectation is that the B10 or B50 life of the new part or PV parts should be equal to or better than that of the old parts or the DV parts. However, fatigue testing has a great deal of inherent variability in the resulting life. In this paper the variability of numerous carburized and induction hardened components is examined.
Technical Paper

The Effects of Non-Petroleum Based Fuels on Thermoset Elastomers

The scope of this paper is to determine the affects that non-petroleum based fuels such as: rapeseed methyl ester (RME) and soy methyl ester (SME) have on thermoset elastomers. The thermoset elastomers that have been evaluated are NBR (Nitrile Butadiene Rubber), NBR/PVC (Nitrile Butadiene Rubber & Polyvinyl Chloride), Epichlorohydrin homo- (Homopolymer of Epichlorohydrin), co- (Copolymer of Epichlorohydrin), ter- (Terpolymer of Ecpichlorohydrin), and Di-, and ter FKM (Fluorinated Rubber). The different elastomers have been subjected to aging in neat fatty acid methyl esters, RME and SME, at a variety of durations and temperatures. The effects of this exposure on the properties of thermoset elastomers are described in this paper.
Technical Paper

Investigation of S-N Test Data Scatter of Carburized 4320 Steel

A series of bending fatigue tests were conducted and S-N data were obtained for two groups of 4320 steel samples: (1) carburized, quenched and tempered, (2) carburized, quenched, tempered and shot peened. Shot peening improved the fatigue life and endurance limit. The S-N data exhibited large scatter, especially for carburized samples and at the high cycle life regime. Sample characterization work was performed and scatter bands were established for residual stress distributions, in addition to fracture and fatigue properties for 4320 steel. Moreover, a fatigue life analysis was performed using fracture mechanics and strain life fatigue theories. Scatter in S-N curves was established computationally by using the lower bound and upper bound in materials properties, residual stress and IGO depth in the input data. The results for fatigue life analysis, using either computational fracture mechanics or strain life theory, agreed reasonably well with the test data.
Technical Paper

Development of an Accelerated Testing Methodology of Rotary Oil Seals for Off-Highway Vehicles

This paper will describe the development of an accelerated testing methodology for an off-highway vehicle rotary oil seal system. There are two typical field failure mechanisms associated with off-highway input pinion shaft oil seals: 1) excessive abrasive wear of soft seal lip and hard shaft surface due to abrasive environment; 2) excessive heat and degradation of the seal lip due to lack of lubricity and wear of the shaft surface run against this seal. The accelerated testing of the rotary oil seal consisted of a combination of the following factors; shaft run-out, eccentricity, testing temperature, rotation and reciprocal motion of the seal lip relative to the shaft surface. The combination of these factors especially reciprocal motion reproduces the same failure mechanism, i.e. shaft wear grooves and oil seal lip wear observed on the field usage samples with 6,300 hours service in only 350 hours of accelerated testing.
Technical Paper

Development of a Maintenance Free Self-Lubricating Ball Joint

Vehicular suspension ball joints can be categorized in the family of tribological systems which can reduce useful service or working capacity through malfunction or breakdown. Detailed metallurgical analysis of the friction and wear mechanisms on typical ball joint bearing surfaces point to a Teflon-based woven fabric, self-lubricating liner as the best bearing material for the joint. Laboratory functional testing was conducted on modern, 4-axis test equipment simulating the applicable loading and motion conditions typically encountered in use. The self-lubricated bearing liner woven with Teflon thread demonstrated higher sustained load capacity, less rotating friction, excellent torque retention qualities and extended life in comparison to existing components utilizing greased metal-on-metal and/or “plastic” bearing materials.
Technical Paper

Contact Fatigue Tests and Contact Fatigue Life Analysis

The main objective of this paper is to investigate contact fatigue life models and to evaluate the effect of surface finish on contact fatigue life. The effect of surface finish on contact fatigue life was investigated experimentally using two roller contact fatigue tests. The test samples, i.e. rollers, were carburized, quenched and then tempered. Two different roller surface finishes were evaluated: machined and as heat-treated surface (baseline rough surface) vs. super finished surface (smooth). Because many factors are involved in sliding/rolling contact fatigue, contact fatigue modeling is still in the early development stage. In this work, we will analyze our contact fatigue test results and correlate contact fatigue life with several empirical contact fatigue models, such as the lambda ratio, a new surface texture parameter, and a normalized pitting model which includes Hertzian Stress, sliding, surface roughness and oil film thickness.
Technical Paper

Characterize the High-Frequency Dynamic Properties of Elastomers Using Fractional Calculus for FEM

Finite element modeling has been used extensively nowadays for predicting the noise and vibration performance of whole engines or subsystems. However, the elastomeric components on the engines or subsystems are often omitted in the FE models due to some known difficulties. One of these is the lack of the material properties at higher frequencies. The elastomer is known to have frequency-dependent viscoelasticity, i.e., the dynamic modulus increases monotonically with frequency and the damping exhibits a peak. These properties can be easily measured using conventional dynamic mechanical experiments but only in the lower range of frequencies. The present paper describes a method for characterizing the viscoelastic properties at higher frequencies using fractional calculus. The viscoelastic constitutive equations based on fractional derivatives are discussed. The method is then used to predict the high frequency properties of an elastomer.
Technical Paper

CAE approach for Plastic Valve Cover System- Part 2

The Plastic Valve Cover System (PVCS) should provides a leak proof seal to the cylinder head under engine temperature, isolate the vibrations transmitted from the engine through the cover to the environment, control the crankcase pressure and house the device to separate oil from the blow-by gas. In order to increase the stiffness of PVCS, short glass fibers and minerals are added during the injection molding of the plastic valve cover. The presence of the fibers results in a component with highly anisotropic thermo-mechanical properties that was not accounted in the previously approach [1]. This paper describes the updated CAE approach with the incorporation of the short fiber anisotropy into the design of cylinder head valve covers.
Technical Paper

Bending Fatigue Life Analysis of Carburized Components Using Strain Life and Fracture Mechanics Approaches

Axle primary gearing is normally carburized for high and balanced resistance to contact fatigue, wear, bending fatigue, and impact loading. The focus of this work is on bending fatigue which is a key design consideration of automotive and commercial vehicle axle gearing. Since a carburized component is basically a composite material with steep gradients in carbon content, hardness, tensile strength and microstructure from surface to the middle of the cross section combined with non-linear residual stress, its bending fatigue life prediction is a complex and challenging task. Many factors affect the bending fatigue performance of axle gearing, such as gear design, gear manufacturing, loading history during service, residual stress distribution, steel grade, and heat treatment. In this paper, the general methodology for bending fatigue life prediction of a carburized component is investigated. Carburized steel composites are treated as two homogeneous materials: case and core.
Technical Paper

Atmospheric Pressure Microwave Plasma P/M Sintering of Cam Lobes

A new proprietary Atmospheric Pressure Microwave Plasma Technology, developed for various materials processing applications, has been applied to P/M sintering of cam lobes. The aims were a) to compare the new processing route with conventional process for the same alloy composition and b) to check the possibility of successful sintering at higher temperatures so that different higher temperature P/M alloys may be used. P/M green cam lobes were used, and sintering runs were carried out initially at temperatures comparable to that currently used in the conventional processes; this was followed by runs at higher temperatures that are not very practical in the conventional processing route due to equipment component constraints. Properties such as density and hardness were measured for the sintered samples, together with corresponding microstructural analysis.
Technical Paper

A Study of Material Compatibility With Deionized Water

Deionized (DI) water is being used for humidification and cooling on some fuel cell designs. This highly purified water is corrosive, yet the high purity is required to maintain the function and durability of the fuel cell. A study of the deionized water system was undertaken to determine the effect of various materials on water quality, and also to determine the effect of deionized water on each material. The test setup was designed to circulate fluid from a reservoir, similar to an actual application. The fluid temperature, pressure, and flow rate were controlled. The resistivity of the water was observed and recorded. Pre- and post-testing of the water and the materials was performed. The goal is to achieve system cleanliness and durability similar to a stainless steel system using lighter, less expensive materials. This paper describes the test setup, test procedures, and the overall results for the eight materials tested.