Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Oxygenates screening for AdvancedPetroleum-Based Diesel Fuels: Part 2. The Effect of Oxygenate Blending Compounds on Exhaust Emissions

2001-09-24
2001-01-3632
Adding oxygenates to diesel fuel has shown the potential for reducing particulate (PM) emissions in the exhaust. The objective of this study was to select the most promising oxygenate compounds as blending components in diesel fuel for advanced engine testing. A fuel matrix was designed to consider the effect of molecular structure and boiling point on the ability of oxygenates to reduce engine-out exhaust emissions from a modern diesel engine. Nine test fuels including a low-sulfur (∼1 ppm), low-aromatic hydrocracked base fuel and 8 oxygenate-base fuel blends were utilized. All oxygenated fuels were formulated to contain 7% wt. of oxygen. A DaimlerChrysler OM611 CIDI engine for light-duty vehicles was controlled with a SwRI Rapid Prototyping Electronic Control System. The base fuel was evaluated in four speed-load modes and oxygenated blends only in one mode. Each operating mode and fuel combination was run in triplicate.
Technical Paper

Oxygenates for Advanced Petroleum-Based Diesel Fuels: Part 1. Screening and Selection Methodology for the Oxygenates

2001-09-24
2001-01-3631
The overall program objectives were three fold: assess the benefits and limitations of oxygenated diesel fuels on engine performance and emissions identify oxygenates most suitable for potential use in future diesel formulations based on physico-chemical properties (e.g. flash point), toxicity, biodegradability and estimated cost of production perform limited emissions and performance testing of the oxygenated diesel blends select at least two oxygenated compounds for advanced engine testing In Part 1 of this program which is described in this paper, an extensive literature review was conducted to identify potential oxygenates for blending into diesel fuels. As many as 71 oxygenates were identified for the initial screening process. Based on a set of physical and chemical properties, a screening methodology was developed to select the 8 oxygenates that will be eligible for engine testing.
Technical Paper

Dimethoxy Methane in Diesel Fuel: Part 3. The Effect of Pilot Injection, Fuels and Engine Operating Modes on Emissions of Toxic Air Pollutants and Gas/Solid Phase PAH

2001-09-24
2001-01-3630
The objective of this study was to quantify the effect of pilot fuel injection on engine-out emissions of potentially toxic compounds from a modern diesel engine operated with different fuels including 15% v/v dimethoxy methane in a low-sulfur diesel fuel. Five diesel fuels were examined: a low-sulfur (∼1 ppm), low aromatic, hydrocracked fuel, the same low-sulfur fuel containing 15% v/v dimethoxy methane, a Fischer-Tropsch fuel, a California reformulated fuel, and a EPA number 2 certification fuel. A DaimlerChrysler OM611 CIDI engine was controlled with a SwRI Rapid Prototyping Electronic Control system. The pilot fuel injection was either turned off or turned on with engine control by either Location of Peak Pressure (LPP) of combustion or the original equipment manufacturer (OEM) calibration strategy. These three control strategies were compared over 2 speed-load modes run in triplicate. Thirty-three potentially toxic compounds were measured.
Technical Paper

Dimethoxy Methane in Diesel Fuel: Part 2. The Effect of Fuels on Emissions of Toxic Air Pollutants and Gas/Solid Phase PAH Using a Composite Of Engine Operating Modes

2001-09-24
2001-01-3628
A weighted composite of four engine-operating modes, representative of typical operating modes found in the US FTP driving schedule, were used to compare engine-out emissions of toxic compounds using five diesel fuels. The fuels examined were: a low-sulfur low-aromatic hydrocracked diesel fuel, the same low-sulfur fuel containing 15% v/v dimethoxy methane, a Fischer-Tropsch fuel, a CARB fuel, and a EPA number 2 diesel certification fuel. A DaimlerChrysler OM611 CIDI engine was operated over 4 speed-load modes: mode 5, 2600 RPM, 8.8 BMEP; mode 6, 2300 RPM, 4.2 BMEP; mode 10, 2000 RPM, 2.0 BMEP; mode 11, 1500 RPM, 2.6 BMEP. The four engine operating modes were weighted as follows: mode 5, 25/1200; mode 6, 200/1200; mode 10, 375/1200; and mode 11, 600/1200. Each operating mode and fuel combination was run in triplicate.
Technical Paper

Dimethoxy Methane in Diesel Fuel: Part 1. The Effect of Fuels and Engine Operating Modes on Emissions of Toxic Air Pollutants and Gas/Solid Phase PAH

2001-09-24
2001-01-3627
The objective of this study was to quantify engine-out emissions of potentially toxic compounds from a modern diesel engine operated with different fuels including 15% v/v dimethoxy methane in a low sulfur diesel fuel. Five diesel fuels were examined: a low-sulfur, low-aromatic hydrocracked (∼1 ppm) fuel, the same low sulfur fuel containing 15% v/v dimethoxy methane, a Fischer-Tropsch fuel, a CARB fuel, and an EPA number 2 certification fuel. A DaimlerChrysler OM611 CIDI engine was controlled with a SwRI Rapid Prototyping Electronic Control system. The engine was operated over 4 speed-load modes. Each operating mode and fuel combination was run in triplicate. Thirty three potentially toxic compounds were measured for each fuel and mode.
X