Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Visualization techniques to identify and quantify sources and paths of exterior noise radiated from stationary and nonstationary vehicles

2000-06-12
2000-05-0326
In recent years, Nearfield Acoustical Holography (NAH) has been used to identify stationary vehicle exterior noise sources. However that application has usually been limited to individual components. Since powertrain noise sources are hidden within the engine compartment, it is difficult to use NAH to identify those sources and the associated partial field that combine to create the complete exterior noise field of a motor vehicle. Integrated Nearfield Acoustical Holography (INAH) has been developed to address these concerns: it is described here. The procedure entails sensing the sources inside the engine compartment by using an array of reference microphones, and then calculating the associated partial radiation fields by using NAH. In the second part of this paper, the use of farfield arrays is considered. Several array techniques have previously been applied to identify noise sources on moving vehicles.
Technical Paper

Using a Statistical Machine Learning Tool for Diesel Engine Air Path Calibration

2014-09-30
2014-01-2391
A full calibration exercise of a diesel engine air path can take months to complete (depending on the number of variables). Model-based calibration approach can speed up the calibration process significantly. This paper discusses the overall calibration process of the air-path of the Cat® C7.1 engine using statistical machine learning tool. The standard Cat® C7.1 engine's twin-stage turbocharger was replaced by a VTG (Variable Turbine Geometry) as part of an evaluation of a novel air system. The changes made to the air-path system required a recalculation of the air path's boost set point and desired EGR set point maps. Statistical learning processes provided a firm basis to model and optimize the air path set point maps and allowed a healthy balance to be struck between the resources required for the exercise and the resulting data quality.
Journal Article

Understanding Hydrocarbon Emissions in Heavy Duty Diesel Engines Combining Experimental and Computational Methods

2017-03-28
2017-01-0703
Fundamental understanding of the sources of fuel-derived Unburned Hydrocarbon (UHC) emissions in heavy duty diesel engines is a key piece of knowledge that impacts engine combustion system development. Current emissions regulations for hydrocarbons can be difficult to meet in-cylinder and thus after treatment technologies such as oxidation catalysts are typically used, which can be costly. In this work, Computational Fluid Dynamics (CFD) simulations are combined with engine experiments in an effort to build an understanding of hydrocarbon sources. In the experiments, the combustion system design was varied through injector style, injector rate shape, combustion chamber geometry, and calibration, to study the impact on UHC emissions from mixing-controlled diesel combustion.
Technical Paper

Tribodynamics of a New De-Clutch Mechanism Aimed for Engine Downsizing in Off-Road Heavy-Duty Vehicles

2017-06-05
2017-01-1835
Clutches are commonly utilised in passenger type and off-road heavy-duty vehicles to disconnect the engine from the driveline and other parasitic loads. In off-road heavy-duty vehicles, along with fuel efficiency start-up functionality at extended ambient conditions, such as low temperature and intake absolute pressure are crucial. Off-road vehicle manufacturers can overcome the parasitic loads in these conditions by oversizing the engine. Caterpillar Inc. as the pioneer in off-road technology has developed a novel clutch design to allow for engine downsizing while vehicle’s performance is not affected. The tribological behaviour of the clutch will be crucial to start engagement promptly and reach the maximum clutch capacity in the shortest possible time and smoothest way in terms of dynamics. A multi-body dynamics model of the clutch system is developed in MSC ADAMS. The flywheel is introducing the same speed and torque as the engine (represents the engine input to the clutch).
Journal Article

Transient, Three Dimensional CFD Model of the Complete Engine Lubrication System

2016-04-05
2016-01-1091
This paper reports on a comprehensive, crank-angle transient, three dimensional, computational fluid dynamics (CFD) model of the complete lubrication system of a multi-cylinder engine using the CFD software Simerics-Sys / PumpLinx. This work represents an advance in system-level modeling of the engine lubrication system over the current state of the art of one-dimensional models. The model was applied to a 16 cylinder, reciprocating internal combustion engine lubrication system. The computational domain includes the positive displacement gear pump, the pressure regulation valve, bearings, piston pins, piston cooling jets, the oil cooler, the oil filter etc… The motion of the regulation valve was predicted by strongly coupling a rigorous force balance on the valve to the flow.
Journal Article

The Visualization of Soot Late in the Diesel Combustion Process by Laser Induced Incandescence with a Vertical Laser Sheet

2015-04-14
2015-01-0801
Although soot-formation processes in diesel engines have been well characterized during the mixing-controlled burn, little is known about the distribution of soot throughout the combustion chamber after the end of appreciable heat release during the expansion and exhaust strokes. Hence, the laser-induced incandescence (LII) diagnostic was developed to visualize the distribution of soot within an optically accessible single-cylinder direct-injection diesel engine during this period. The developed LII diagnostic is semi-quantitative; i.e., if certain conditions (listed in the Appendix) are true, it accurately captures spatial and temporal trends in the in-cylinder soot field. The diagnostic features a vertically oriented and vertically propagating laser sheet that can be translated across the combustion chamber, where “vertical” refers to a direction parallel to the axis of the cylinder bore.
Technical Paper

The Role of Carboxylate-Based Coolants in Cast Iron Corrosion Protection

2001-03-05
2001-01-1184
Nitrites have long been added to heavy-duty coolant to inhibit iron cylinder liner corrosion initiated by cavitation. However, in heavy-duty use, nitrites deplete from the coolant, which then must be refortified using supplemental coolant additives (SCA's). Recently, carboxylates have also been found to provide excellent cylinder liner protection in heavy-duty application. Unlike nitrites, carboxylate inhibitors deplete slowly and thus do not require continual refortification with SCA's. In the present paper laboratory aging experiments shed light on the mechanism of cylinder liner protection by these inhibitors. The performance of carboxylates, nitrites and mixtures of the two inhibitors are compared. Results correlate well with previously published fleet data. Specifically, rapid nitrite and slow carboxylate depletion are observed. More importantly, when nitrite and carboxylates are used in combination, nitrite depletion is repressed while carboxylates deplete at a very slow rate.
Technical Paper

The Effect of Fuel Composition and Engine Operating Parameters on Injector Deposits in a High-Pressure Direct Injection Gasoline (DIG) Research Engine

1999-10-25
1999-01-3690
The effects of fuel composition and engine operating parameters on high-pressure, direct injection gasoline (DIG) injector plugging and deposit formation have been studied. The engine used was a conventional dual-sparkplug, 2.2-liter Nissan engine modified for direct injection using one of the spark plug holes. The engine was run under 20% rich conditions to accelerate deposit formation. A ten-fuel test matrix was designed around T90, sulfur level, and olefin levels indicated in the European gasoline specifications for year 2000. The gasolines, containing no detergents, were formulated using refinery stream blends to match the specified targets. Injector flow loss was monitored by fuel flow to the engine and monitoring oxygen sensors on each of the four cylinders. The impact of fuel composition on deposit formation and injector plugging is discussed. Injector flow loss was strongly influenced by injector tip temperature.
Technical Paper

The Effect of Fuel Composition and Additive Content on Injector Deposits and Performance of an Air-Assisted Direct Injection Spark Ignition (DISI) Research Engine

2001-05-07
2001-01-2030
This paper presents the findings of some fundamental characterisation of the deposits that form on the injectors of an air-assisted DISI automotive engine, including the effect of these deposits on engine performance when operated in different combustion modes, with varying fuel composition and additive content. A root cause analysis was undertaken, including an assessment of injector temperature and deposit chemistry. Fuels from a matrix designed around the European year 2000 gasoline specifications for T90, olefin and aromatic levels were used to study the effect of fuel composition on deposit formation. Two commercial gasoline detergent additives, of different chemistries, were used to investigate the impact on deposit formation. The results of the fuels study and deposit analysis are consistent with published theories concerning fuel composition impact on combustion chamber deposit (CCD).
Technical Paper

The Application of Boundary Element Analysis to Engine Component Design

1987-02-01
870578
Boundary element analysis (BEA) is an effective computer simulation program for certain applications in design engineering. The BEA technique has been used extensively at Caterpillar for structural analysis of engine and vehicle components. The time savings and modeling ease of BEA are illustrated with specific examples of engine component models. These examples represent a variety of modeling techniques, and include comparisons with measured test data.
Technical Paper

Strategies for Developing Performance Standards for Alternative Hydraulic Fluids

2000-09-11
2000-01-2540
There has been an ongoing interest in replacing mineral oil with more biodegradable and/or fire-resistant hydraulic fluids in many mobile equipment applications. Although many alternative fluids may be more biodegradable, or fire-resistant, or both than mineral oil, they often suffer from other limitations such as poorer wear, oxidative stability, and yellow metal corrosion which inhibit their performance in high-pressure hydraulic systems, particularly high pressure piston pump applications. From the fluid supplier's viewpoint, the development of a definitive test, or series of tests, that provides sufficient information to determine how a given fluid would perform with various hydraulic components would be of interest because it would minimize extensive testing. This is often too slow or prohibitively expensive. Furthermore, from OEM's (original equipment manufacturer's) point of view, it would be advantageous to develop a more effective, industry accepted fluid analysis screening.
Technical Paper

Steady-State Engine Testing of γ-Alumina Catalysts Under Plasma Assist for NOx Control in Heavy-Duty Diesel Exhaust

2003-03-03
2003-01-1186
A slipstream of exhaust from a Caterpillar 3126B engine was diverted into a plasma-catalytic NOx control system in the space velocity range of 7,000 to 100,000 hr-1. The stream was first fed through a non-thermal plasma that was formed in a coaxial cylinder dielectric barrier discharge reactor. Plasma treated gas was then passed over a catalyst bed held at constant temperature in the range of 573 to 773 K. Catalysts examined consisted of γ-alumina, indium-doped γ-alumina, and silver-doped γ-alumina. Road and rated load conditions resulted in engine out NOx levels of 250 - 600 ppm. The effects of hydrocarbon level, catalyst temperature, and space velocity are discussed where propene and in one case ultra-low sulfur diesel fuel (late cycle injection) were the reducing agents used for NOx reduction. Results showed NOx reduction in the range of 25 - 97% depending on engine operating conditions and management of the catalyst and slipstream conditions.
Technical Paper

Solder Protection with Extended Life, Carboxylate-Based Coolants

2000-06-19
2000-01-1979
Silicate-free, carboxylate based technology as typified by Texaco Extended Life Coolant (TELC) and Caterpillar Extended Life Coolant (ELC), both meeting Caterpillar's EC-1 Coolant Specification, offer excellent corrosion protection for commercial lead solders commonly used in the fabrication of copper/brass radiators and heater cores throughout the trucking industry. Results of laboratory testing using solders from commercial radiators manufacturers and extensive field coolant analysis compare extended life technology with the popular conventional coolant technologies. In the laboratory, the effect of coolant concentration on solder protection is explored using the glassware corrosion test, ASTM D-1384. At concentrations ranging from 33% up to 75% the carboxylate technology offers comparable to superior protection when compared to the popular heavy-duty conventional coolant containing silicates and phosphates.
Technical Paper

Potentials of Electrical Assist and Variable Geometry Turbocharging System for Heavy-Duty Diesel Engine Downsizing

2017-03-28
2017-01-1035
Diesel engine downsizing aimed at reducing fuel consumption while meeting stringent exhaust emissions regulations is currently in high demand. The boost system architecture plays an essential role in providing adequate air flow rate for diesel fuel combustion while avoiding impaired transient response of the downsized engine. Electric Turbocharger Assist (ETA) technology integrates an electric motor/generator with the turbocharger to provide electrical power to assist compressor work or to electrically recover excess turbine power. Additionally, a variable geometry turbine (VGT) is able to bring an extra degree of freedom for the boost system optimization. The electrically-assisted turbocharger, coupled with VGT, provides an illuminating opportunity to increase the diesel engine power density and enhance the downsized engine transient response. This paper assesses the potential benefits of the electrically-assisted turbocharger with VGT to enable heavy-duty diesel engine downsizing.
Technical Paper

Performance of Organic Acid Based Coolants in Heavy Duty Applications

1996-02-01
960644
Coolant formulations based on organic acid corrosion inhibitor technology have been tested in over 180 heavy duty engines for a total of more than 50 million kilometers. This testing has been used to document long life coolant performance in various engine types from four major engine manufacturers. Inspections of engines using organic acid based coolant (with no supplemental coolant additive) for up to 610,000 kilometers showed excellent protection of metal engine components. Improved protection was observed against cylinder liner, water pump, and aluminum spacer deck corrosion. In addition, data accumulated from this testing were used to develop depletion rate curves for long life coolant corrosion inhibitors, including tolyltriazole and nitrite. Nitrite was observed to deplete less rapidly in long life coolants than in conventional formulations.
Technical Paper

Numerical Prediction and Verification of Noise Radiation Characteristics of Diesel Engine Block

2019-06-05
2019-01-1591
To assess the contribution of structure-borne noise from an engine, it is critical to characterize the dynamic and vibro-acoustic properties of the engine components and assembly. In this paper, a component level study of a three-cylinder diesel engine block is presented. Virtual analysis was done to predict the natural frequencies and mode shapes of an engine block in the first step. Then, these results were used to decide the optimum test locations and an experimental modal test was conducted on the engine block. The initial virtual model results for the natural frequencies and mode shapes were correlated with the results from test. Then, the virtual model was updated with the damping derived from experimental modal test to match the vibration frequency response functions. Further, the virtual model was used for prediction of vibro-acoustic transfer functions. The vibro-acoustic transfer functions were also obtained from test.
Technical Paper

Nonlinear Finite Element Analysis of Diesel Engine Cylinder Head Gasket Joints

1993-09-01
932456
A nonlinear, three-dimensional finite element analysis of the cylinder head gasket joint has been developed to allow accurate prediction of global and local joint behavior during engine operation. Nonlinear material properties and load cases that simulate full cycle engine operation are the analysis foundation. The three-dimensional, nonlinear, full-cycle simulation accurately predicts cylinder head gasket joint response to assembly, thermal, and cylinder pressure loading. Predictions correlate well with measured engine test data. Analysis results include local pressure distribution and global load splits. Insight into joint loading and an improved understanding of overall joint behavior provide the basis for informed design and development decisions.
Technical Paper

Modeling Techniques to Support Fuel Path Control in Medium Duty Diesel Engines

2010-04-12
2010-01-0332
In modern production diesel engine control systems, fuel path control is still largely conducted through a system of tables that set mode, timing and injection quantity and with common rail systems, rail pressure. In the hands of an experienced team, such systems have proved so far able to meet emissions standards, but they lack the analytical underpinning that lead to systematic solutions. In high degree of freedom systems typified by modern fuel injection, there is substantial scope to deploy optimising closed loop strategies during calibration and potentially in the delivered product. In an optimising controller, a digital algorithm will explicitly trade-off conflicting objectives and follow trajectories during transients that continue to meet a defined set of criteria. Such an optimising controller must be based on a model of the system behaviour which is used in real time to investigate the consequences of proposed control actions.
Technical Paper

Methodology to Perform Conjugate Heat Transfer Modeling for a Piston on a Sector Geometry for Direct-Injection Internal Combustion Engine Applications

2019-04-02
2019-01-0210
The increase in computational power in recent times has led to multidimensional computational fluid dynamics (CFD) modeling tools being used extensively for optimizing the diesel engine piston design. However, it is still common practice in engine CFD modeling to use constant uniform boundary temperatures. This is either due to the difficulty in experimentally measuring the component temperatures or the lack of measurements when simulation is being used predictively. This assumption introduces uncertainty in heat flux predictions. Conjugate heat transfer (CHT) modeling is an approach used to predict the component temperatures by simultaneously modeling the heat transfer in the fluid and the solid phase. However, CHT simulations are computationally expensive as they require more than one engine cycle to be simulated to converge to a steady cycle-averaged component temperature.
Journal Article

Influence of Injection Timing and Piston Bowl Geometry on PCCI Combustion and Emissions

2009-04-20
2009-01-1102
Premixed Charge Compression Ignition (PCCI), a Low Temperature Combustion (LTC) strategy for diesel engines is of increasing interest due to its potential to simultaneously reduce soot and NOx emissions. However, the influence of mixture preparation on combustion phasing and heat release rate in LTC is not fully understood. In the present study, the influence of injection timing on mixture preparation, combustion and emissions in PCCI mode is investigated by experimental and computational methods. A sequential coupling approach of 3D CFD with a Stochastic Reactor Model (SRM) is used to simulate the PCCI engine. The SRM accounts for detailed chemical kinetics, convective heat transfer and turbulent micro-mixing. In this integrated approach, the temperature-equivalence ratio statistics obtained using KIVA 3V are mapped onto the stochastic particle ensemble used in the SRM.
X