Refine Your Search

Search Results

Viewing 1 to 10 of 10
Journal Article

The Role of EGR in PM Emissions from Gasoline Engines

2010-04-12
2010-01-0353
A dilute spark-ignited engine concept has been developed as a potential low cost competitor to diesel engines by Southwest Research Institute (SwRI), with a goal of diesel-like efficiency and torque for light- and medium-duty applications and low-cost aftertreatment. The targeted aftertreatment method is a traditional three-way catalyst, which offers both an efficiency and cost advantage over typical diesel aftertreatment systems. High levels of exhaust gas recirculation (EGR) have been realized using advanced ignition systems and improved combustion, with significant improvements in emissions, efficiency, and torque resulting from using high levels of EGR. The primary motivation for this work was to understand the impact high levels of EGR would have on particulate matter (PM) formation in a port fuel injected (PFI) engine. While there are no proposed regulations for PFI engine PM levels, the potential exists for future regulations, both on a size and mass basis.
Journal Article

The Interaction of Fuel Anti-Knock Index and Cooled EGR on Engine Performance and Efficiency

2012-04-16
2012-01-1149
Experiments were performed on a 2.4L boosted, MPI gasoline engine, equipped with a low-pressure loop (LPL) cooled EGR system and an advanced ignition system, using fuels with varying anti-knock indices. The fuels were blends of 87, 93 and 105 Anti-Knock Index (AKI) gasoline. Ignition timing and EGR sweeps were performed at various loads to determine the tradeoff between EGR level and fuel octane rating. The resulting engine data was analyzed to establish the relationship between the octane requirement and the level of cooled EGR used in a given application. In addition, the combustion difference between fuels was examined to determine the effect that fuel reactivity, in the form of anti-knock index (AKI), has on EGR tolerance and burn rate. The results indicate that the improvement in effective AKI of the fuel from using EGR is constant across commercial grade gasolines at about 0.5 ON per % EGR.
Journal Article

The Effects of Piston Crevices and Injection Strategy on Low-Speed Pre-Ignition in Boosted SI Engines

2012-04-16
2012-01-1148
The spark ignition (SI) engine has been known to exhibit several different abnormal combustion phenomena, such as knock or pre-ignition, which have been addressed with improved engine design or control schemes. However, in highly boosted SI engines, Low-Speed Pre-Ignition (LSPI), a pre-ignition event typically followed by heavy knock, has developed into a topic of major interest due to its potential for engine damage. Previous experiments associated increases in hydrocarbon emissions with the blowdown event of an LSPI cycle [1]. Also, the same experiments showed that there was a dependency of the LSPI activity on fuel and/or lubricant compositions [1]. Based on these findings it was hypothesized that accumulated hydrocarbons play a role in LSPI and are consumed during LSPI events. A potential source for accumulated HC is the top land piston crevice.
Journal Article

Potential and Challenges for a Water-Gas-Shift Catalyst as a Combustion Promoter on a D-EGR® Engine

2015-04-14
2015-01-0784
In light of the increasingly stringent efficiency and emissions requirements, several new engine technologies are currently under investigation. One of these new concepts is the Dedicated EGR (D-EGR®) engine. The concept utilizes fuel reforming and high levels of recirculated exhaust gas (EGR) to achieve very high levels of thermal efficiency. While the positive impact of reformate, in particular hydrogen, on gasoline engine performance has been widely documented, the on-board reforming process and / or storage of H2 remains challenging. The Water-Gas-Shift (WGS) reaction is well known and has been used successfully for many years in the industry to produce hydrogen from the reactants water vapor and carbon monoxide. For this study, prototype WGS catalysts were installed in the exhaust tract of the dedicated cylinder of a turbocharged 2.0 L in-line four cylinder MPI engine. The potential of increased H2 production in a D-EGR engine was evaluated through the use of these catalysts.
Journal Article

Impact of EGR Quality on the Total Inert Dilution Ratio

2016-04-05
2016-01-0713
A series of tests were performed on a gasoline powered engine with a Dedicated EGR® (D-EGR®) system. The results showed that changes in engine performance, including improvements in burn rates and stability and changes in emissions levels could not be adequately accounted for solely due to the presence of reformate in the EGR stream. In an effort to adequately characterize the engine's behavior, a new parameter was developed, the Total Inert Dilution Ratio (TIDR), which accounts for the changes in the EGR quality as inert gases are replaced by reactive species such as CO and H2.
Journal Article

Engine Operating Condition and Gasoline Fuel Composition Effects on Low-Speed Pre-Ignition in High-Performance Spark Ignited Gasoline Engines

2011-04-12
2011-01-0342
Downsizing is an important concept to reduce fuel consumption as well as emissions of spark ignition engines. Engine displacement is reduced in order to shift operating points from lower part load into regions of the operating map with higher efficiency and thus lower specific fuel consumption [ 1 ]. Since maximum power in full load operation decreases due to the reduction of displacement, engines are boosted (turbocharging or supercharging), which leads to a higher specific loading of the engines. Hence, a new combustion phenomenon has been observed at high loads and low engine speed and is referred to as Low-Speed Pre-Ignition or LSPI. In cycles with LSPI, the air/fuel mixture is ignited prior to the spark which results in the initial flame propagation quickly transforming into heavy engine knock. Very high pressure rise rates and peak cylinder pressures could exceed design pressure limits, which in turn could lead to degradation of the engine.
Journal Article

Effects of EGR Dilution and Fuels on Spark Plug Temperatures in Gasoline Engines

2013-04-08
2013-01-1632
The addition of exhaust gas recirculation (EGR) has demonstrated the potential to significantly improve engine efficiency by allowing high CR operation due to a reduction in knock tendency, heat transfer, and pumping losses. In addition, EGR also reduces the engine-out emission of nitrogen oxides, particulates, and carbon monoxide while further improving efficiency at stoichiometric air/fuel ratios. However, improvements in efficiency through enhanced combustion phasing at high compression ratios can result in a significant increase in cylinder pressure. As cylinder pressure and temperature are both important parameters for estimating the durability requirements of the engine - in effect specifying the material and engineering required for the head and block - the impact of EGR on surface temperatures, when combined with the cylinder pressure data, will provide an important understanding of the design requirements for future cylinder heads.
Journal Article

Effect of EGR on Particle Emissions from a GDI Engine

2011-04-12
2011-01-0636
Gasoline direct injected (GDI) engines are becoming a concern with respect to particulate matter (PM) emissions. The upcoming 2014 Euro 6 regulations may require a drastic reduction in solid particle number emissions from GDI engines and the proposed California Air Resources Board (CARB) LEV III regulations for 2014 and 2017 will also require some PM reduction measures. As a result, it is necessary to characterize PM emissions from GDI engines and investigate strategies that suppress particle formation during combustion. The main focus of this work was on using exhaust gas recirculation (EGR) as a means to reduce engine-out particle emissions from a GDI engine with an overall stoichiometric fuel to air mixture. A small displacement, turbocharged GDI engine was operated at a variety of steady-state conditions with differing levels of EGR to characterize total (solid plus volatile) and solid particle emissions with respect to size, number, and soot or black carbon mass.
Journal Article

A High Efficiency, Dilute Gasoline Engine for the Heavy-Duty Market

2012-09-24
2012-01-1979
A 13 L HD diesel engine was converted to run as a flame propagation engine using the HEDGE™ Dual-Fuel concept. This concept consists of pre-mixed gasoline ignited by a small amount of diesel fuel - i.e., a diesel micropilot. Due to the large bore size and relatively high compression ratio for a pre-mixed combustion engine, high levels of cooled EGR were used to suppress knock and reduce the engine-out emissions of the oxides of nitrogen and particulates. Previous work had indicated that the boosting of high dilution engines challenges most modern turbocharging systems, so phase I of the project consisted of extensive simulation efforts to identify an EGR configuration that would allow for high levels of EGR flow along the lug curve while minimizing pumping losses and combustion instabilities from excessive backpressure. A potential solution that provided adequate BTE potential was consisted of dual loop EGR systems to simultaneously flow high pressure and low pressure loop EGR.
Technical Paper

A Gas Separation Membrane Highly Selective to CO2 in the Exhaust of Internal Combustion Engines

2019-12-19
2019-01-2265
Southwest Research Institute has developed a passive, flow-through, membrane which separates carbon dioxide (CO2) from other exhaust gas species. Stoichiometric exhaust gas for 0% ethanol fuels contain approximately 14% CO2 by concentration. The membrane consists of a ceramic substrate impregnated with lithium zirconate (Li2ZrO3). In the presence of temperatures of 400-600 °C the CO2 reacts with lithium zirconate to form lithium carbonate (Li2CO3). The new compound moves from the inner surface of the membrane via partial pressure gradient to the outer wall of the membrane and desorbs into a low concentration CO2 environment, e.g. atmospheric air with 400 ppm CO2. SwRI has tested the membrane under engine-like conditions, comparable to 2000 rpm 10 bar BMEP operation, on a standalone burner rig (ECTO-lab burner). On the SwRI ECTO-lab burner rig temperature, flow-rate and exhaust gas products can be independently varied.
X