Refine Your Search

Topic

Author

Search Results

Journal Article

Visual, Thermodynamic, and Electrochemical Analysis of Condensate in a Stoichiometric Spark-Ignited EGR Engine

2018-04-03
2018-01-1406
The objectives of this project were to investigate the corrosivity of condensate in a stoichiometric spark-ignited (SI) engine when running exhaust gas recirculation (EGR) and to determine the effects of sulfur-in-fuel on corrosion. A 2.0 L turbocharged direct-injected SI engine was operated with low-pressure EGR for this study. The engine was instrumented for visual, thermodynamic, and electrochemical analyses to determine the potential for corrosion at locations where condensation was deemed likely in a low-pressure loop EGR (LPL-EGR) engine. The electrochemical analysis was performed using multi-electrode array (MEA) corrosion probes. Condensate was also collected and analyzed. These analyses were performed downstream of both the charge air cooler (CAC) and the EGR cooler. It was found that while conditions existed for sulfuric acid to form with high-sulfur fuel, no sulfuric acid was detected by any of the measurement methods.
Technical Paper

Vehicle Drive Cycle Fuel Economy Prediction Using Single Cylinder Engine Data

2019-04-02
2019-01-0628
The confluence of fuel economy improvement requirements and increased use of ethanol as a gasoline blend component has led to various studies into the efficiency and performance benefits to be had when using high octane number, high ethanol content fuels in modern engines. As part of a comprehensive study of the autoignition of fuels in both the CFR octane rating engine and a modern, direct injection, turbocharged spark ignited engine, a series of fuel blends were prepared with market relevant ranges of octane numbers and ethanol blends levels. The paper reports on the first part of this study where fuel flow measurements were done on a single cylinder research engine, utilizing a GM LHU combustion system, and then used to predict drive cycle fuel economy. For a range of engine speeds and manifold air pressures, spark timing was adjusted to achieve either the maximum brake torque (MBT) or a matched 50 % mass fraction burnt location.
Technical Paper

Use of Alcohol-in-Diesel Fuel Emulsions and Solutions in a Medium-Speed Diesel Engine

1981-02-01
810254
The use of alcohol as a supplemental fuel for a medium-speed diesel engine was investigated using a two-cylinder, two-stroke test engine. Both stabilized and unstabilized emulsions of methanol-in-diesel fuel and ethanol-in-diesel fuel were tested. Also, anhydrous ethanol/diesel fuel solutions were evaluated. Maximum alcohol content of the emulsions and solutions was limited by engine knocking due to a reduction in fuel cetane number. Engine power and thermal efficiency were slightly below baseline diesel fuel levels in the high and mid-speed ranges, but were somewhat improved at low speeds during tests of the unstabilized emulsions and the ethanol solutions. However, thermal efficiency of the stabilized emulsions fell below baseline levels at virtually all conditions.
Technical Paper

Three-Way Catalyst Technology for Off-Road Equipment Engines

1999-09-28
1999-01-3283
A project was conducted by Southwest Research Institute on behalf of the California Air Resources Board and the South Coast Air Quality Management District to demonstrate the technical feasibility of utilizing closed-loop three-way catalyst technology in off-road equipment applications. Five representative engines were selected, and baseline emission-tested using both gasoline and LPG. Emission reduction systems, employing three-way catalyst technology with electronic fuel control, were designed and installed on two of the engines. The engines were then installed in a fork lift and a pump system, and limited durability testing was performed. Results showed that low emission levels, easily meeting CARB's newly adopted large spark-ignited engine emission standards, could be achieved.
Technical Paper

The Texas Diesel Fuels Project, Part 4: Fuel Consumption, Emissions, and Cost-Effectiveness of an Ultra-Low-Sulfur Diesel Fuel Compared to Conventional Diesel Fuels

2005-04-11
2005-01-1724
The Texas Department of Transportation (TxDOT) began using an ultra-low-sulfur, low aromatic, high cetane number diesel fuel (TxLED, Texas Low Emission Diesel) in June 2003. They initiated a simultaneous study of the effectiveness to reduce emissions and influence fuel economy of this fuel in comparison to 2D on-road diesel fuel used in both their on-road and off-road equipment. The study incorporated analyses for the fleet operated by the Association of General Contractors (AGC) in the Houston area. Some members of AGC use 2D off-road diesel in their equipment. One off-road engine, two single-axle dump trucks, and two tandem-axle dump trucks were tested. The equipment tested included newer electronically-controlled diesels. The off-road engine was tested over the TxDOT Telescoping Boom Excavator Cycle. The dump trucks were tested using the “route” technique over the TxDOT Single-Axle Dump Truck Cycle or the TxDOT Tandem-Axle Dump Truck Cycle.
Technical Paper

The Stratified Charge Glowplug Ignition (SCGI) Engine with Natural Gas Fuel

1991-09-01
911767
The objective was to demonstrate the feasibility of operating a natural gas two-stroke engine using glow plug ignition with very lean mixtures. Based on the results obtained, the term SCGI (stratified charge glow plug ignition) was coined to describe the engine. An JLO two-stroke diesel engine was converted first to a natural gas fueled spark-ignited engine for the baseline tests, and then to an SCGI engine. The SCGI engine used a gas operated valve in the cylinder head to admit the natural gas fuel, and a glow plug was used as a means to initiate the combustion. The engine was successfully run, but was found to be sensitive to various conditions such as the glow plug temperature. The engine would run very lean, to an overall equivalence ratio of 0.33, offering the potential of good fuel economy and low NOx emissions.
Technical Paper

The Impact of Fuel Properties on Diesel Engine Emissions and a Feasible Solution for Common Calibration

2014-09-30
2014-01-2367
Fuel properties impact the engine-out emission directly. For some geographic regions where diesel engines can meet emission regulations without aftertreatment, the change of fuel properties will lead to final tailpipe emission variation. Aftertreatment systems such as Diesel Particulate Filter (DPF) and Selective Catalytic Reduction (SCR) are required for diesel engines to meet stringent regulations. These regulations include off-road Tier 4 Final emission regulations in the USA or the corresponding Stage IV emission regulations in Europe. As an engine with an aftertreatment system, the change of fuel properties will also affect the system conversion efficiency and regeneration cycle. Previous research works focus on prediction of engine-out emission, and many are based on chemical reactions. Due to the complex mixing, pyrolysis and reaction process in heterogeneous combustion, it is not cost-effective to find a general model to predict emission shifting due to fuel variation.
Technical Paper

The Heavy Duty Gasoline Engine - A Multi-Cylinder Study of a High Efficiency, Low Emission Technology

2005-04-11
2005-01-1135
SwRI has developed a new technology concept involving the use of high EGR rates coupled with a high-energy ignition system in a gasoline engine to improve fuel economy and emissions. Based on a single-cylinder study [1], this study extends the concept of a high compression ratio gasoline engine with EGR rates > 30% and a high-energy ignition system to a multi-cylinder engine. A 2000 MY Isuzu Duramax 6.6 L 8-cylinder engine was converted to run on gasoline with a diesel pilot ignition system. The engine was run at two compression ratios, 17.5:1 and 12.5:1 and with two different EGR systems - a low-pressure loop and a high pressure loop. A high cetane number (CN) diesel fuel (CN=76) was used as the ignition source and two different octane number (ON) gasolines were investigated - a pump grade 91 ON ((R+M)/2) and a 103 ON ((R+M)/2) racing fuel.
Journal Article

The Effects of Piston Crevices and Injection Strategy on Low-Speed Pre-Ignition in Boosted SI Engines

2012-04-16
2012-01-1148
The spark ignition (SI) engine has been known to exhibit several different abnormal combustion phenomena, such as knock or pre-ignition, which have been addressed with improved engine design or control schemes. However, in highly boosted SI engines, Low-Speed Pre-Ignition (LSPI), a pre-ignition event typically followed by heavy knock, has developed into a topic of major interest due to its potential for engine damage. Previous experiments associated increases in hydrocarbon emissions with the blowdown event of an LSPI cycle [1]. Also, the same experiments showed that there was a dependency of the LSPI activity on fuel and/or lubricant compositions [1]. Based on these findings it was hypothesized that accumulated hydrocarbons play a role in LSPI and are consumed during LSPI events. A potential source for accumulated HC is the top land piston crevice.
Technical Paper

The Effects of Fuel Properties on Emissions from a 2.5gm NOx Heavy-Duty Diesel Engine

1998-10-19
982491
The engine selected for this work was a Caterpillar 3176 engine. Engine exhaust emissions, performance, and heat release rates were measured as functions of engine configuration, engine speed and load. Two engine configurations were used, a standard 1994 design and a 1994 configuration with EGR designed to achieve a NOx emissions level of 2.5 gm/hp-hr. Measurements were performed at 7 different steady-state, speed-load conditions on thirteen different test fuels. The fuel matrix was statistically designed to independently examine the effects of the targeted fuel properties. Cetane number was varied from 40 to 55, using both natural cetane number and cetane percent improver additives. Aromatic content ranged from 10 to 30 percent in two different forms, one in which the aromatics were predominantly mono-aromatic species and the other, where a significant fraction of the aromatics were either di- or tri-aromatics.
Journal Article

The Effects of EGR Composition on Combustion Performance and Efficiency

2020-09-15
2020-01-2052
Because of the thermodynamic relationship of pressure, temperature and volume for processes which occur in an internal-combustion engine (ICE), and their relationship to ideal efficiency and efficiency-limiting phenomena e.g. knock in spark-ignition engines, changing the thermo-chemical properties of the in-cylinder charge should be considered as an increment in the development of the ICE engine for future efficiency improvements. Exhaust gas recirculation (EGR) in spark-ignited gasoline engines is one increment that has been made to alter the in-cylinder charge. EGR gives proven thermal efficiency benefits for SI engines which improve vehicle fuel economy, as demonstrated through literature and production applications. The thermal efficiency benefit of EGR is due to lower in-cylinder temperatures, reduced heat transfer and reduced pumping losses. The next major increment could be modifying the constituents of the EGR stream, potentially through the means of a membrane.
Technical Paper

The Effect of In-Cylinder Wall Wetting Location on the HC Emissions from SI Engines

1999-03-01
1999-01-0502
The effect of combustion chamber wall-wetting on the emissions of unburned and partially-burned hydrocarbons (HCs) from gasoline-fueled SI engines was investigated experimentally. A spark-plug mounted directional injection probe was developed to study the fate of liquid fuel which impinges on different surfaces of the combustion chamber, and to quantify its contribution to the HC emissions from direct-injected (DI) and port-fuel injected (PFI) engines. With this probe, a controlled amount of liquid fuel was deposited on a given location within the combustion chamber at a desired crank angle while the engine was operated on pre-mixed LPG. Thus, with this technique, the HC emissions due to in-cylinder wall wetting were studied independently of all other HC sources. Results from these tests show that the location where liquid fuel impinges on the combustion chamber has a very important effect on the resulting HC emissions.
Technical Paper

The Effect of Hydrogen Enrichment on EGR Tolerance in Spark Ignited Engines

2007-04-16
2007-01-0475
Small (up to 1% by volume) amounts of hydrogen (H2) were added to the intake charge of a single-cylinder, stoichiometric spark ignited engine to determine the effect of H2 addition on EGR tolerance. Two types of tests were performed at 1500 rpm, two loads (3.1 bar and 5.5 bar IMEP), two compression ratios (11:1 and 14:1) and with two fuels (gasoline and natural gas). The first test involved holding EGR level constant and increasing the H2 concentration. The EGR level of the engine was increased until the CoV of IMEP was > 5% and then small amounts of hydrogen were added until the total was 1% by volume. The effect of increasing the amount of H2 on engine stability was measured along with combustion parameters and engine emissions. The results showed that only a very small amount of H2 was necessary to stabilize the engine. At amounts past that level, increasing the level of H2 had no or only a very small effect.
Journal Article

The Effect of EGR on Low-Speed Pre-Ignition in Boosted SI Engines

2011-04-12
2011-01-0339
The spark ignition (SI) engine has been known to exhibit several different abnormal combustion phenomena, such as knock or pre-ignition, which have been addressed with improved engine design or control schemes. However, in highly boosted SI engines - where the engine displacement is reduced and turbocharging is employed to increase specific power - a new combustion phenomenon, described as Low-Speed Pre-Ignition (LSPI), has been exhibited. LSPI is characterized as a pre-ignition event typically followed by heavy knock, which has the potential to cause degradation of the engine. However, because LSPI events occur only sporadically and in an uncontrolled fashion, it is difficult to identify the causes for this phenomenon and to develop solutions to suppress it. Some countermeasures exist that OEMs can use to avoid LSPI, such as load limiting, but these have drawbacks.
Technical Paper

Spray Characterization in a DISI Engine During Cold Start: (1) Imaging Investigation

2006-04-03
2006-01-1004
Spray angle and penetration length data were taken under cold start conditions for a Direct Injection Spark Ignition engine to investigate the effect of transient conditions on spray development. The results show that during cold start, spray development depends primarily on fuel pressure, followed by Manifold Absolute Pressure (MAP). Injection frequency had little effect on spray development. The spray for this single hole, pressure-swirl fuel injector was characterized using high speed imaging. The fuel spray was characterized by three different regimes. Regime 1 comprised fuel pressures from 6 - 13 bar, MAPs from 0.7 - 1 bar, and was characterized by a large pre-spray along with large drop sizes. The spray angle and penetration lengths were comparatively small. Regime 2 comprised fuel pressures from 30 - 39 bar and MAPs from 0.51 - 0.54 bar. A large pre-spray and large drop sizes were still present but reduced compared to Regime 1.
Journal Article

Simulation of Organic Rankine Cycle Electric Power Generation from Light-Duty Spark Ignition and Diesel Engine Exhaust Flows

2013-04-08
2013-01-1644
The performance of an organic Rankine cycle (ORC) used to recover waste heat from the exhaust of a diesel and a spark ignition engine for electric power generation was modeled. The design elements of the ORC incorporated into the thermodynamic model were based on an experimental study performed at Oak Ridge National Laboratory in which a regenerative organic Rankine cycle system was designed, assembled and integrated into the exhaust of a 1.9 liter 4-cylinder automotive turbo-diesel. This engine was operated at a single fixed-load point at which Rankine cycle state point temperatures as well as the electrical power output of an electric generator coupled to a turbine that expanded R245fa refrigerant were measured. These data were used for model calibration.
Technical Paper

Relationships Between Fuel Properties and Composition and Diesel Engine Combustion Performance and Emissions

1994-03-01
941018
Five different diesel fuel feedstocks were processed to two levels of aromatic (0.05 sulfur, and then 10 percent) content. These materials were distilled into 6 to 8 narrow boiling range fractions that were each characterized in terms of the properties and composition. The fractions were also tested at five different speed load conditions in a single cylinder engine where high speed combustion data and emissions measurements were obtained. Linear regression analysis was used to develop relationships between the properties and composition, and the combustion and emissions characteristics as determined in the engine. The results are presented in the form of the regression equations and discussed in terms of the relative importance of the various properties in controlling the combustion and emissions characteristics. The results of these analysis confirm the importance of aromatic content on the cetane number, the smoke and the NOx emissions.
Technical Paper

Regulated Emissions from Biodiesel Tested in Heavy-Duty Engines Meeting 2004 Emission Standards

2005-05-11
2005-01-2200
Biodiesel produced from soybean oil, canola oil, yellow grease, and beef tallow was tested in two heavy-duty engines. The biodiesels were tested neat and as 20% by volume blends with a 15 ppm sulfur petroleum-derived diesel fuel. The test engines were a 2002 Cummins ISB and 2003 DDC Series 60. Both engines met the 2004 U.S. emission standard of 2.5 g/bhp-h NOx+HC (3.35 g/kW-h) and utilized exhaust gas recirculation (EGR). All emission tests employed the heavy-duty transient procedure as specified in the U.S. Code of Federal Regulations. Reduction in PM emissions and increase in NOx emissions were observed for all biodiesels in all engines, confirming observations made in older engines. On average PM was reduced by 25% and NOx increased by 3% for the two engines tested for a variety of B20 blends. These changes are slightly larger in magnitude, but in the same range as observed in older engines.
Technical Paper

Predictive GT-Power Simulation for VNT Matching to EIVC Strategy on a 1.6 L Turbocharged GDI Engine

2019-04-02
2019-01-0192
The use of early intake valve closing (EIVC) can lead to improvements in spark-ignition engine efficiency. One of the greatest barriers facing adoption of EIVC for high power-density applications is the challenge of boosting as EIVC strategies reduce volumetric efficiency. Turbochargers with variable nozzle turbines (VNT) have recently been developed for gasoline applications operating at high exhaust gas temperatures. The use of a single VNT as a boost device may provide a lower-cost option compared to two-stage boosting systems or 48 V electronic boost devices for some EIVC applications. A predictive model was created based on engine testing results from a 1.6 L turbocharged gasoline direct injection engine [1]. The model was tuned so that it predicted burn-rates and end-gas knock over an engine operating map with varying speeds, loads, compression ratios and fuel types.
Technical Paper

Particle Number Emissions Evaluation for Conventional SI, Low-Pressure Loop EGR, and D-EGR Combustion Strategies

2021-04-06
2021-01-0485
The size and distribution of a vehicle’s tailpipe particulate emissions can have a strong impact on human health, especially if the particles are small enough to enter the human respiratory system. Gasoline direct injection (GDI) has been adopted widely to meet stringent fuel economy and CO2 regulations across the globe for recent engine architectures. However, the introduction of GDI has led to challenges concerning the particulate matter (PM) and particle number (PN) emissions from such engines. This study aimed to compare the particulate emissions of three SI combustion strategies: conventional SI, conventional stoichiometric low-pressure exhaust gas recirculation (LP-EGR), and Dedicated-EGR (D-EGR) at four specific test conditions. It was shown that the engine-out PM/PN for both the EGR strategies was lower than the conventional SI combustion under normal operating conditions. The test conditions were chosen to represent the WLTC test conditions.
X