Refine Your Search

Topic

Author

Search Results

Technical Paper

Use of Butane as an Alternative Fuel-Emissions from a Conversion Vehicle Using Various Blends

1995-10-01
952496
This paper describes experiments conducted to determine the regulated emissions, ozone-forming potentials, specific reactivities, and reactivity adjustment factors for eight butane and propane alternative fuel blends run on a light-duty vehicle, emission certified to be a California transitional low emission vehicle (TLEV) and converted to operate on liquefied petroleum gas (LPG). Duplicate EPA FTP emission tests were conducted with each fuel. Hydrocarbon speciation was utilized to determine reactivity-adjusted non-methane organic gases (NMOG) emissions for one test on each fuel. Results showed that all eight fuels could allow the converted vehicle to pass California ultra-low emission vehicle (ULEV) NMOG and oxides of nitrogen (NOx) standards. Six of the eight fuels could allow the vehicle to pass ULEV carbon monoxide (CO) standards. BUTANE has been an important gasoline blending component for many years.
Technical Paper

Ultra Low Emissions and High Efficiency from an On-Highway Natural Gas Engine

1998-05-04
981394
Results from work focusing on the development of an ultra low emissions, high efficiency, natural gas-fueled heavy- duty engine are discussed in this paper. The engine under development was based on a John Deere 8.1L engine; this engine was significantly modified from its production configuration during the course of an engine optimization program funded by the National Renewable Energy Laboratory. Previous steady-state testing indicated that the modified engine would provide simultaneous reductions in nonmethane hydrocarbon emissions and fuel consumption while maintaining equivalent or lower NOx levels. Federal Test Procedure transient tests confirmed these expectations. Very low NOx emissions, averaging 1.0 g/bhp-hr over hot-start cycles, were attained; at these conditions, reductions in engine-out nonmethane hydro-carbons emissions (NMHC) were approximately 30 percent, and fuel consumption over the cycle was also reduced relative to the baseline.
Technical Paper

US 2010 Emissions Capable Camless Heavy-Duty On-Highway Natural Gas Engine

2007-07-23
2007-01-1930
The goal of this project was to demonstrate a low emissions, high efficiency heavy-duty on-highway natural gas engine. The emissions targets for this project are to demonstrate US 2010 emissions standards on the 13-mode steady state test. To meet this goal, a chemically correct combustion (stoichiometric) natural gas engine with exhaust gas recirculation (EGR) and a three way catalyst (TWC) was developed. In addition, a Sturman Industries, Inc. camless Hydraulic Valve Actuation (HVA) system was used to improve efficiency. A Volvo 11 liter diesel engine was converted to operate as a stoichiometric natural gas engine. Operating a natural gas engine with stoichiometric combustion allows for the effective use of a TWC, which can simultaneously oxidize hydrocarbons and carbon monoxide and reduce NOx. High conversion efficiencies are possible through proper control of air-fuel ratio.
Technical Paper

The Impact of Fuel Sulfur Level on FTP Emissions - Effect of PGM Catalyst Type

1997-02-24
970737
With the advent of stricter vehicle emission standards, the improvement of three way catalyst performance and durability remains a pressing issue. A critical consideration in catalyst design is the potential for variations in fuel sulfur levels to have a significant impact on the ability to reach TLEV, LEV, and ULEV emission levels. As a result, a better understanding of the role of PGM composition in the interplay between thermal durability and sulfur tolerance is required. Three way catalysts representative of standard Pd-only, Pd/Rh and Pt/Rh formulations were studied over a variety of aging and evaluation conditions. The parameters investigated included aging temperature, air fuel ratio and sulfur level. Evaluations were performed on a 1994 TLEV vehicle using different sulfur level fuels. The effect of PGM loading was also included within the study.
Journal Article

The Effect of Fuel Composition on Performance and Emissions of a Variety of Natural Gas Engines

2010-05-05
2010-01-1476
Work was performed to determine the feasibility of operating heavy-duty natural gas engines over a wide range of fuel compositions by evaluating engine performance and emission levels. Heavy-duty compressed natural gas engines from various engine manufacturers, spanning a range of model years and technologies, were evaluated using a diversity of fuel blends. Performance and regulated emission levels from these engines were evaluated using natural gas fuel blends with varying methane number (MN) and Wobbe Index in a dynamometer test cell. Eight natural gas blends were tested with each engine, and ranged from MN 75 to MN 100. Test engines included a 2007 model year Cummins ISL G, a 2006 model year Cummins C Gas Plus, a 2005 model year John Deere 6081H, a 1998 model year Cummins C Gas, and a 1999 model year Detroit Diesel Series 50G TK. All engines used lean-burn technology, except for the ISL G, which was a stoichiometric engine.
Technical Paper

The Effect of Biodiesel Fuels on Transient Emissions from Modern Diesel Engines, Part I Regulated Emissions and Performance

2000-06-19
2000-01-1967
The use of biodiesel fuels derived from vegetable oils or animal fats as a substitute for conventional petroleum fuel in diesel engines has received increased attention. This interest is based on a number of properties of biodiesel including the fact that it is produced from a renewable resource, its biodegradability, and its potential beneficial effects on exhaust emissions. Transient exhaust emissions from three modern diesel engines were measured during this study, both with and without an oxidation catalyst. Emissions were characterized with neat biodiesel and with a blend of biodiesel and conventional diesel fuel. Regulated emissions and performance data are presented in this paper, while the results of a detailed chemical characterization of exhaust emissions are presented in a companion paper. The use of biodiesel resulted in lower emissions of unburned hydrocarbons, carbon monoxide, and particulate matter, with some increase in emissions of oxides of nitrogen on some engines.
Journal Article

Synergies between High EGR Operation and GDI Systems

2008-04-14
2008-01-0134
A gasoline direct injection engine was operated at elevated EGR levels over a significant portion of the performance map. The engine was modified to use both cooled and un-cooled EGR in high pressure loop and low pressure loop configurations. The addition of EGR at low and part load was shown to decrease NO and CO emissions and to reduce fuel consumption by up to 4%, primarily through the reduction in pumping losses. At high loads, the addition of EGR resulted in higher fuel consumption benefits of 10-20% as well as the expected NO and CO reductions. The fuel economy benefit at high loads resulted from a decrease in knock tendency and a subsequent improvement in combustion phasing as well as reductions in exhaust temperatures that eliminated the requirement for over-fuelling.
Technical Paper

Simultaneous Reduction of Diesel Particulate and NOx Using a Plasma

1994-10-01
942070
A non-thermal plasma treatment of diesel engine exhaust was effective in removing particulate (soot) and oxides of nitrogen (NOx) from two different light-duty diesel vehicles: an older-technology indirect-injection Toyota truck, and a newer-technology direct-injection Dodge truck. Particulate removal efficiencies and NOx conversion efficiencies were determined at space velocities up to 20,000/hr. Particulate removal efficiencies were above 60 percent for most conditions, but decreased with increasing space velocities. Conversion efficiencies for NOx and carbon monoxide (CO) were also dependent on the space velocity. The NOx conversion efficiencies were generally greater than 40 percent at space velocities less than 7000/hr. The CO concentration increased through the plasma reaction bed indicating that CO was produced by reactions in the plasma.
Technical Paper

Ruthenium-Based Catalyst in EGR Leg of a D-EGR Engine Offers Combustion Improvements Through Selective NOX Removal

2016-04-05
2016-01-0952
A recent collaborative research project between Southwest Research Institute® (SwRI®) and the University of Texas at San Antonio (UTSA) has demonstrated that a ruthenium (Ru) catalyst is capable of converting oxides of nitrogen (NOX) emissions to nitrogen (N2) with high activity and selectivity. Testing was performed on coated cordierite ceramic cores using SwRI’s Universal Synthetic Gas Reactor® (USGR®). Various gas mixtures were employed, from model gas mixes to full exhaust simulant gas mixes. Activity was measured as a function of temperature, and gaseous inhibitors and promoters were identified. Different Ru supports were tested to identify ones with lowest temperature activity. A Ru catalyst can be used in the exhaust gas recirculation (EGR) leg of a Dedicated-EGR (D-EGR) engine [1,2], where it uses carbon monoxide (CO) and hydrogen (H2) present in the rich gas environment to reduce NOX to N2 with 100% efficiency and close to 100% selectivity to N2.
Technical Paper

Reduced Cold-Start Emissions Using Rapid Exhaust Port Oxidation (REPO) in a Spark-Ignition Engine

1997-02-24
970264
An emissions reduction strategy was developed and demonstrated to significantly reduce cold-start hydrocarbon (HC) and CO emissions from a spark ignition (SI), gasoline-fueled engine. This strategy involved cold-starting the engine with an ultra-fuel rich calibration, while metering near-stoichiometric fractions of air directly into the exhaust ports. Using this approach, exhaust constituents spontaneously ignited at the exhaust ports and burned into the exhaust manifold and exhaust pipe leading to the catalytic converter. The resulting exotherm accelerated catalyst heating and significantly decreased light-off time following a cold-start on the FTP-75 with a Ford Escort equipped with a 1.9L engine. Mass emissions measurements acquired during the first 70 seconds of the FTP-75 revealed total-HC and CO reductions of 68 and 50 percent, respectively, when compared to baseline measurements.
Technical Paper

Preparation and Characterization of Nanophase Gold Catalysts for Emissions Control

2008-10-07
2008-01-2639
Various gold catalysts were prepared using commercial and in-house fabricated advanced catalyst supports that included mesoporous silica, mesoporous alumina, sol-gel alumina, and transition metal oxides. Gold nanoparticles were loaded on the supports by co-precipitation, deposition-precipitation, ion exchange and surface functionalization techniques. The average gold particle size was ∼20nm or less. The oxidation activity of the prepared catalysts was studied using carbon monoxide and light hydrocarbons (ethylene, propylene and propane) in presence of water and CO2 and the results are presented.
Journal Article

Potential and Challenges for a Water-Gas-Shift Catalyst as a Combustion Promoter on a D-EGR® Engine

2015-04-14
2015-01-0784
In light of the increasingly stringent efficiency and emissions requirements, several new engine technologies are currently under investigation. One of these new concepts is the Dedicated EGR (D-EGR®) engine. The concept utilizes fuel reforming and high levels of recirculated exhaust gas (EGR) to achieve very high levels of thermal efficiency. While the positive impact of reformate, in particular hydrogen, on gasoline engine performance has been widely documented, the on-board reforming process and / or storage of H2 remains challenging. The Water-Gas-Shift (WGS) reaction is well known and has been used successfully for many years in the industry to produce hydrogen from the reactants water vapor and carbon monoxide. For this study, prototype WGS catalysts were installed in the exhaust tract of the dedicated cylinder of a turbocharged 2.0 L in-line four cylinder MPI engine. The potential of increased H2 production in a D-EGR engine was evaluated through the use of these catalysts.
Technical Paper

Phased Air/Fuel Ratio Perturbation - A Fuel Control Technique for Improved Catalyst Efficiency

2000-03-06
2000-01-0891
This paper describes the results of a study that examined the mechanism of phased perturbation as an emissions control technique. Phased perturbation involves independently controlling the fuel delivered to each bank of a dual bank engine (or each cylinder of a single manifold engine), which allows the two banks to have an adjustable, relative Air/Fuel (A/F) perturbation phase-shift from one another. The phase shifted exhaust is then recombined to achieve a near stoichiometric mixture prior to entering a single underbody catalyst. Phase shifting the exhaust Air/Fuel ratio creates a situation in which both rich exhaust constituents (unburnt hydrocarbons and carbon monoxide) and lean exhaust constituents (oxygen and oxides of nitrogen) arrive at the catalyst at the same time. The results of the study showed that phased perturbation produced a significant effect on A/F control and catalyst THC, CO, and NOx efficiency.
Technical Paper

Performance and Emission Results from a Heavy-Duty Diesel Engine with Ducted Fuel Injection

2021-04-06
2021-01-0503
Ducted fuel injection (DFI) was tested for the first time in a heavy-duty diesel metal engine. It was implemented on a Caterpillar 2.5-liter single-cylinder heavy-duty diesel engine fitted with a common rail fuel system and a Tier 4 final production piston. Engine tests consisted of single-injection timing sweeps at A100 and C100, where rail pressure and exhaust gas recirculation (EGR) were also varied. A 6-hole fuel injector tip with 205 am orifices was used with a 130° spray angle and rail pressures up to 250 MPa. The ducts were 14 mm long, had a 2.5 mm inner diameter, and were placed 3.8 mm away from the orifice exits. The ducts were attached to a base, which in turn was attached to the cylinder head with bolts. Furthermore, alignment of the ducts and their corresponding fuel jets was accomplished.
Technical Paper

Particulate Characterization Using Five Fuels

1996-05-01
961089
Particulate and regulated gaseous emissions were characterized in a feasibility study for a 1994 Ford Taurus Flexible Fuel Vehicle (FFV) operating on five fuels. The five fuels included Federal Reformulated Gasoline (RFG); 85% fuel grade methanol and 15% gasoline (M85); 85% denatured ethanol and 15% gasoline (E85d); liquefied petroleum gas (LPG) meeting HD-5 specifications; and industry average compressed natural gas (CNG). The vehicle was operated fuel-rich to simulate a vehicle operating condition leading to increased production of particulate matter. This simulation was accomplished by using a universal exhaust gas oxygen sensor (UEGO) in connection with an external controller. Appropriate aftermarket conversion kits involving closed-loop control and adaptive learning capabilities allowed operation on the gaseous fuels. Particulate emissions were characterized by total mass and particle size.
Journal Article

On-Road Evaluation of a PEMS for Measuring Gaseous In-Use Emissions from a Heavy-Duty Diesel Vehicle

2008-04-14
2008-01-1300
On-road comparisons were made between a federal reference method mobile emissions laboratory (MEL) and a portable emissions measurement system (PEMS) to support validation of the engine “Not To Exceed” (NTE) emissions design and to evaluate the accuracy of PEMS. Three different brake specific emissions calculation equations (methods) were used as part of this research, with method one directly using engine speed and torque, and methods two and three including ECM fuel consumption and carbon balance fuel consumption. The brake specific NOx emissions for the particular PEMS unit utilized in this program were consistently higher than those for the MEL. The brake specific (bs) NOx NTE deltas were +0.63±0.31 g/kW-h (0.47±0.23 g/hp-h), +0.55±0.17 g/kW-h (0.41±0.13 g/hp-h), and +0.54±0.17g/kW-h (0.40±0.13g/hp-h) for methods one, two, and three respectively.
Technical Paper

On-Board Hydrogen Generation for Rapid Catalyst Light-Off

2000-06-19
2000-01-1841
This paper describes an on-vehicle demonstration of a hydrogen-heated catalyst (HHC) system for reducing the level of cold-start hydrocarbon emissions from a gasoline-fueled light-duty vehicle. The HHC system incorporated an onboard electrolyzer that generates and stores hydrogen (H2) during routine vehicle operation. Stored hydrogen and supplemental air are injected upstream of a platinum-containing automotive catalyst when the engine is started. Rapid heating of the catalytic converter occurs immediately as a result of catalytic oxidation of hydrogen (H2) with oxygen (O2) on the catalyst surface. Federal Test Procedure (FTP) emission results of the hydrogen-heated catalyst-equipped vehicle demonstrated reductions of hydrocarbons (HC) and carbon monoxide (CO) up to 68 and 62 percent, respectively. This study includes a brief analysis of the emissions and fuel economy effects of a 10-minute period of hydrogen generation during the FTP.
Technical Paper

Novel Renewable Additive for Diesel Engines

2014-04-01
2014-01-1262
A novel oxygenate, 5-methyl furoate ethyl ester (EF), was made by a chemical process from biomass and ethanol. This compound was then used as a renewable diesel additive at concentrations up to 10 percent by volume. This unique ester, which is similar in composition to a know food additive, was studied for engine performance in comparison with two other oxygenated alternatives (i.e. ethanol - EtOH and ethyl levulinate - EL) and with B20 (20 percent biodiesel). Tests were performed with a 2012 6.7 L Ford diesel engine using the heavy-duty Federal Test Procedure. The emission results indicated that a blend of the ester with diesel was comparable to the base fuel. In addition, the results also indicated that EF reduces the formation of particulate matter (PM) and carbon monoxide. Other properties of EF seem to improve the physical properties of the blended fuel such as lubricity and viscosity when compared to the base fuel.
Technical Paper

Motorcycle Emissions, Their Impact, and Possible Control Techniques

1974-02-01
740627
Seven motorcycles, ranging in size from 100 to 1200 cm3, were tested for emissions characterization purposes. They were operated on the federal seven-mode test procedure (for 1971 and older light-duty vehicles), the federal LA-4 test procedure (for 1972 and later LDVs), and under a variety of steady-state conditions. Four of the machines tested had 4-stroke engines, and the other three had 2-stroke engines. Emissions which were measured included hydrocarbons, CO, CO2, NO, NOx, O2, aldehydes, light hydrocarbons, particulates, and smoke. Emissions of SOx were estimated on the basis of fuel consumed, and evaporative hydrocarbon losses were also estimated. Crankcase “blowby” emissions from one 4-stroke machine were measured. The impact of motorcycles on national pollutant totals was estimated, based on the test results and information from a variety of sources on national population and usage of motorcycles.
Technical Paper

Marine Outboard and Personal Watercraft Engine Gaseous Emissions, and Particulate Emission Test Procedure Development

2004-09-27
2004-32-0093
The U.S. EPA and the California Air Resources Board have adopted standards to reduce emissions from recreational marine vessels. Existing regulations focus on reducing hydrocarbons. There are no regulations on particulate emissions; particulate is expected to be reduced as a side benefit of hydrocarbon control. The goal of this study was to develop a sampling methodology to measure particulate emissions from marine outboard and personal watercraft engines. Eight marine engines of various engine technologies and power output were tested. Emissions measured in this program included hydrocarbons, carbon monoxide, oxides of nitrogen. Particulate emissions will be presented in a follow-up paper.
X