Refine Your Search


Search Results

Technical Paper

Utilization of Blends of Jatropha Oil and N-Butanol in a Naturally Aspirated Compression Ignition Engine

Diesel Engines are widely used in transportation, industrial and agriculture sectors worldwide due to their versatility and ruggedness. However, they also emit harmful emissions detrimental to human health and environment. Apart from environmental degradation, the perturbation in international crude oil prices is also mandating use of renewable fuels. In this context, vegetable oils such as Jatropha Curcas due to their carbon neutral nature and widespread availability, seems to present a promising alternative to the mineral diesel. Straight vegetable oils (SVO) are not recommended for direct diesel engine application due to their higher viscosity, poor volatility etc. and dilution of straight vegetable oil may effectively enable its direct application in unmodified diesel engines. In the present study, Jatropha oil was diluted with n-Butanol to improve the fuel properties of the blend.
Technical Paper

Transient Analysis of Natural Convection around a Pair of Circular Cylinders inside a Square Enclosure

Heat exchangers are widely used in various transportation, industrial, or domestic applications such as thermal power plants, means of heating, transporting and air conditioning systems, electronic equipment and space vehicles. In all these applications improvements in the efficiency of the heat exchangers can lead to substantial cost, space and material savings. Hence considerable research work has been done in the past to seek effective ways to improve the efficiency of heat exchangers. In this paper the effect of natural convection is justified between exterior solid wall surfaces and the surrounding air inside the enclosure. Designing of electronic devices, heavy industrial equipments such as boilers, turbines etc. and building aerodynamics are some of the real world application associated with this study.
Technical Paper

Study of Performance and Emissions Parameters of Single Cylinder Diesel Engine Fuelled with Micro Emulsion of Jatropha Oil and Ethanol

The use of alternative fuel has many advantages and the main ones are its renewability, biodegradability with better quality exhaust gas emission, which do not contribute to raise the level of carbon dioxide in the atmosphere. The use of non-edible vegetables oils as an alternative fuels for diesel engine is accelerated by the energy crisis due to depletion of resources and increase in environmental problems. In Asian countries like India, great need of edible oil as a food so cannot use these oils as alternative fuels for diesel engine. However there are many issues related to the use of vegetable oils in diesel engine that is high viscosity, low calorific value, high self-ignition temperature etc. Jatropha curcas has been promoted in India as a sustainable substitute to diesel fuel. This research prepared micro emulsions of ethanol and Jatropha vegetable oil in different ratio and find out the physico-chemical parameters to compare with mineral diesel oil.
Technical Paper

Study of Lean Production System Using Value Stream Mapping in Manufacturing Sector and Subsequent Implementation in Tool Room

This research is an attempt to investigate the significance of Value Stream Mapping (VSM) in the lean transformation of manufacturing units (largely automotive) and then apply the same in a tool room. It is an essential tool used to interpret both material and information flow in a system. The tool room under study specializes in production of a large variety of high precision tools for the automotive industry. A product family is chosen to map and analyze various stages of its production process, starting from the raw material (R/M) to the finished goods’ (F/G) stage. VSM is then implemented in the tool room to correctly identify wastes and thus improvement areas to bridge gaps between current and future states. Both current and future state maps are drafted along with usage of other lean tools to justify its implementation in a small setup like tool room.
Technical Paper

Potential Utilization of CNG in Stationary HCCI Engine

Internal combustion engines are extensively used in every field of life in today's world. Diesel engines being more efficient are preferred in the industrial and transportation sector in comparison to spark ignition engines for their higher efficiency, versatility and ruggedness. The major emissions of diesel engines are oxides of nitrogen (NOx), particulate matter (PM), carbon dioxide (CO2), carbon monoxide (CO). Among these emissions, oxides of nitrogen (NOx) and the particulate matter are the reasons of serious concern. For reduction of oxides of nitrogen (NOx) and particulate matter simultaneously, the use of Homogeneous Charge Compression Ignition (HCCI) have provided a sustainable solution in the present scenario. Further, the use of CNG in HCCI engine along with pilot diesel injection; the emissions have been decreased drastically. Homogeneous mixing of fuel and air leads to cleaner combustion and lower emissions.
Technical Paper

Performance and Emission Characteristics of n-Butanol and Iso-Butanol Diesel Blend Comparison

The growing energy demand and limited petroleum resources in the world have guided researchers towards the use of clean alternative fuels like alcohols for their better tendency to decrease the engine emissions. To comply with the future stringent emission standards, innovative diesel engine technology, exhaust gas after-treatment, and clean alternative fuels are required. The use of alcohols as a blending agent in diesel fuel is rising, because of its benefits like enrichment of oxygen, premixed low temperature combustion (LTC) and enhancement of the diffusive combustion phase. Several researchers have investigated the relationship between LTC operational range and cetane number. In a light-duty diesel engine working at high loads, a low-cetane fuel allowed a homogeneous lean mixture with improved NOx and smoke emissions joint to a good thermal efficiency.
Technical Paper

Performance and Emission Characteristics of Fish Oil Biodiesel and Diesel Blend in a Medium Capacity C.I. Engine Employing EGR

Ever increasing consumption of fossil fuel and large scale deterioration of environment are mandating employment of renewable fuels. Researchers all over the world are experimenting on variety of alternative fuels for meeting future energy demands. Biodiesel is one of the most promising alternative fuels due to lower CO, HC and PM emissions. However, NOx emissions are increased in case of biodiesel in CI engine. The present study focuses on evaluation of performance and emission characteristics of a medium capacity diesel engine on blends of fish oil biodiesel and diesel blends employing EGR. Fish oil was transesterified with methyl alcohol to produce methyl ester. B20 blend of biodiesel was used since it balances the property differences with conventional diesel, e.g., performance, emission benefits and cost. Further, B20 blend can be used in automotive engines with no major modification. NOx formation takes place when combustion temperature is more than 2000K.
Technical Paper

Performance and Emission Analysis of a CI Engine in Dual Mode with CNG and Karanja Oil Methyl Ester

Rapid depletion of fossil fuels is urgently demanding an extensive research work to find out the viable alternative fuel for meeting sustainable energy demand without any environmental impact. In the future, our energy systems will need to be renewable, sustainable, efficient, cost-effective, convenient and safe. Therefore, researchers has shown interest towards alternative fuels like vegetable oils, alcohols, LPG, CNG, Producer gas, biogas in order to substitute conventional fuel i.e. diesel used in compression ignition (CI) engine. However, studies have suggested that trans-esterified vegetable oils retain quite similar physico-chemical properties comparable to diesel. Besides having several advantages, its use is restricted due to higher emissions i.e. NOx, CO, HC and deposits due to improper combustion. Hence, there is a need of cleaner fuel for diesel engines for the forthcoming stringent emissions norms and the fossil depletion.
Technical Paper

Performance Evaluation and Emission Characteristics of Biodiesel-Alcohol-Diesel Blends Fuelled in VCR Engine

The diesel engine has for many decades now assumed a leading role in both the medium and medium-large transport sector due to their high efficiency and ability to produce high torque at low RPM. Furthermore, energy diversification and petroleum independence are also required by each country. In response to this, biodiesel is being considered as a promising solution due to its high calorific value and lubricity conventional petroleum diesel. However, commercial use of biodiesel has been limited because of some drawbacks including corrosivity, instability of fuel properties, higher viscosity, etc. Biodiesel are known for lower CO, HC and PM emissions. But, on the flip side they produce higher NOx emissions. The addition of alcohol to biodiesel diesel blend can help in reducing high NOx produced by the biodiesel while improving some physical fuel properties.
Technical Paper

Performance Based Optimization of Intake and Injection Parameters of an Advanced Compressed Air Engine Kit

The increment in the application of fossil fuels is leading the world into a catastrophic state both environmentally and economically. Current demand for fuels exceeds its imminent supply and rather sooner than later energy demands will have to shift towards non-conventional fuels to cope with the situation. With constant developments in the automotive sector, several solutions have been found but none have been as good as gasoline to substitute it in the commercial market. One such solution being compressed air might solve this global fuel crisis, which serves a glowing advantage of being cheaper and greener as it produces zero tail-pipe emissions, and can help in decreasing automobile’s contribution to global warming. Though the potential energy stored in the compressed air limits its application to light duty vehicles and still there will be a need for other alternative solutions for the heavy duty vehicles in order to relieve the pressure from the fossil fuels.
Technical Paper

Performance Analyses of Diesel Engine at Different Injection Angles Using Water Diesel Emulsion

Globally, transportation is the second largest energy consuming sector after the industrial sector and is completely dependent on petroleum products and alternative technologies. So, fossil fuel consumption for energy requirement is a primary concern and can be addressed with the fuel consumption reduction technologies. Transportation sector is mainly using diesel engines because of production of high thermal efficiency and higher torque at lower RPM. Therefore, diesel consumption should be targeted for future energy security and this can be primarily controlled by the petroleum fuel substitution techniques for existing diesel engines. Some of the fuel, which includes biodiesel, alcohol-diesel emulsions and diesel water emulsions etc. Among which the diesel water emulsion (DWE) is found to be most suitable fuel due to reduction in particulate matter and NOx emission, besides that it also improves the brake thermal efficiency.
Technical Paper

Optimization Techniques to Improve the Efficiency of Regenerative (Magnetic) Braking Systems

At present, vast numbers of problems are triggered due to growing global energy crisis and rising energy costs. Since, on-road vehicles constitute the majority share of transportation; any energy losses in them will have a direct effect on the overall global energy scenario. Most of the energy lost is dissipated from the exhaust, cooling, and lubrication systems, and, most importantly, in the braking system. About 6% of the total energy produced is lost with the airstream in form of heat energy when brakes are applied. Thus, various technological systems need to be developed to conserve energy by minimize energy losses while application of brakes. Regenerative Braking is one such system or an energy recovery mechanism causing the vehicle to decelerate by converting its kinetic energy into another form (usually electricity), which further can be used either immediately or stored until needed.
Technical Paper

Optimization Analysis of Injection Angle and Injector Nozzle of an Advanced Compressed Air Engine Kit

Increased demand and use of fossil fuels in transportation sector accompanied by the global oil crisis does not support sustainable development for the future generations to come. Not only that, today's on-road vehicles produce over one third of the CO and NOX present in our atmosphere and over twenty per cent of the global warming pollution. This air pollution carries significant risks for human health and the environment. Through clean vehicle and fuel technologies, it is possible to significantly reduce air pollution from our vehicles. In such a grim situation, Compressed Air Vehicles (CAV) powered by pressurized air stored in high pressure storage tanks seem to be one of the practical solutions available for tackling the fuel crisis and environment related issues.
Technical Paper

Friction and Sliding Wear Characterization of Ion Chrome Coating

The functions of a piston ring are to seal off the combustion pressure, to distribute and control the oil, to transfer heat and to stabilize the piston. Most piston rings and metallic sealing rings for modern application where running conditions are severe, require some form of coating to minimise abrasion and corrosion. The piston ring coating improves the life of engine as well as fuel efficiency. In this study, physical vapour deposition (ion chrome plating) was investigated; plates with similar composition as the piston ring material were prepared by the casting process using induction arc furnace and sand mould. Wear test of the coating was conducted on pin on disc machine under dry conditions. The wear rate was calculated using mass loss methods on an electronic balance having least count of 1× 10−4 g.
Technical Paper

Fabrication of Composite Using Base Metal as Al 6082 T0 Reinforced with Fe-MWCNT Using Friction Stir Processing and Examine Changes in Tensile Strength, Microstructure and Hardness

Friction stir processing (FSP) is a method of changing the properties of metal through intense, localized plastic deformation. This deformation is produced by forcibly inserting a non-consumable tool into a workpiece, and revolving the tool in a stirring motion as it is pushed laterally through the workpiece. It comprises of a rotating tool with pin and shoulder which are inserted into a single piece of material and traversed along the desired path to cover the region of interest. Friction between the shoulder and work piece results in localized heating which raises the temperature of the material to the range where it is plastically deformed. During this process, severe plastic deformation occurs and due to thermal exposure of material, it results in a significant evolution in the local microstructure. Carbon nanotubes were dispersed into Al matrix by multipass FSP to fabricate Al6082 T0/Fe-MWCNT.
Technical Paper

Experimental Investigations of Metal Oxide Nano-Additives on Working Characteristics of CI Engine

Biodiesel is a potential substitute for diesel and extensive research is carried in India on production and utilization of biodiesel from a variety of edible/non-edible, animal fat and waste oils. However, issues like stability, clogging, increased NOx, and high consumption rate etc. are some of the critical issues which are associated with long-term use of these alternative fuels in a diesel engine. The recent developments in science and technology may have concreted a method to create nano measure vigorous resources that have incredible benefits to micron sized constituents. Nano liquids may be a fresh period of compact-fluid complex constituents comprising of nano sized concrete elements disseminated into a base liquid. The present study investigates the effect of doping metal oxides nanoparticles with waste fish oil-based biodiesel. For the present study, the blends of fuel are prepared by using 30ppm each of titanium dioxide and alumina nanoparticles respectively.
Technical Paper

Evaluation of Performance and Emission Characteristics of an Unmodified Naturally Aspirated Compression Ignition Engine on Blends of Diethyl Ether and Diesel

The world today is majorly dependent upon fossil fuels for power generation, of which diesel forms an integral part. Diesel engines, having the highest thermal efficiency of any regular internal or external combustion engine, are widely used in almost all walks of life and cannot be dispensed with in the near future. However, the limited availability of diesel and the adverse effects of diesel engine emissions like nitrogen oxide (NOx) and soot particles raise serious concerns. Hence, their performance and emission improvement continues to be an avenue of great research activity. In this research work, the effects of blending Diethyl Ether with diesel in various proportions (5%, 10%, 15% and 20% by volume) were evaluated on engine performance and emissions of an industrial internal combustion engine.
Technical Paper

Emission Studies on a VCR Engine Using Stable Diesel Water Emulsion

Internal combustion engines are the backbone of contemporary global transportation. But the major drawbacks associated with them, are the exhaust gases. These include carbon monoxide (CO), unburned hydrocarbons (UBHC), oxides of nitrogen (NOx), odor, particulate matter (PM) etc. Among them the emissions of oxides of nitrogen (NOx) and the particulate matter are the reasons of serious concern. For NOx reduction in recent developing technologies, diesel water emulsion was found the best approach for the existing engines by researchers. In the present study, performance and emission statistics of a diesel engine using diesel water emulsion operating at different compression ratios from 17:1 to 18:1 was performed. Stable Emulsions were prepared with 5%, 10%, 15%, 20% and 25 % (v/v) water concentration with variable agitation speed ranging from 5000-15000 rpm along with two surfactants. Various physico-chemical properties of emulsions were tested for all six samples including diesel.
Technical Paper

Effect of Using Exhaust Gas Recirculation (EGR) on the Emission Characteristics of the CI Engine Fuelled by Acetone-Butanol-Ethanol (ABE) Diesel Blends

The power generation, agriculture, and transportation sectors are dominated by diesel engines due to better thermal efficiency and durability. Diesel engines are also a major contributor to the air pollutants such as NOx and particulate matter. Acetone-butanol-ethanol (ABE) is considered a promising alternative fuel as it emits less pollutants compared to conventional fuels. In current work, the ABE used was of the ratio (3:6:1) and four samples were prepared for engine trial ABE (10%90%diesel), ABE (20%80%diesel), ABE (30%70%diesel) and ABE (40%60%diesel). Their physio-chemical properties like kinematic viscosity, density, specific gravity and calorific value were checked and tested on compression ignition engine at different operating parameters. The experimental work was conducted upon Kirloskar 4-stroke single cylinder, vertical, air-cooled 661cc compression ignition engine at different speeds and loads.
Technical Paper

Development of an Intake Runner of a CI Engine for Performance Enhancement and Emission Reductions Due to Variations in Air Flow Pattern within the Runner

Recent scenario of fossil fuel depletion as well as rising emission levels has witnessed an ever aggravating trend for decades. The solution to the problems has been addressed by investments and research in the field of fuels; such as the use of cleaner fuels involving biodiesel, alcohol blends, hydrogen and electric drivelines, as well as improvement in traditional technologies such as variable geometry systems, VVT load control strategies etc. The developments have highlighted the enormous potential present in such systems in terms of maximizing engine efficiency and emission reductions. The present paper aims at designing and implementing an intake runner system for a CI engine capable of providing flexibility with variations in operating conditions. Primarily, the design aims at altering the air flow phenomenon within the primary intake of the engine by inducing swirl in the runner through a secondary runner.