Refine Your Search

Topic

Author

Search Results

Technical Paper

Use of CFD Simulation to Predict Fan Power and Airflow Pattern Inside the Climatic Chamber

2004-11-16
2004-01-3254
For A/C and cooling systems development is usual send vehicles to US or Europe for wind tunnel tests, witch is expensive and has a long lead-time. Here in Brazil Delphi has at the Piracicaba Technical Center a chamber equipped with temperature control and chassis dynamometer. There is a up-grade project for it that consist in add ducts with fans inside the chamber that will get air from the chamber, already in the right temperature, accelerate and homogenate the air flow and blow it out direct to the front end of the vehicle. For development purposes may be possible eliminate totally the necessity of sending vehicle abroad. It was then decided to use CFD simulation to predict firstly the required fan power necessary to supply winds until 120 km/h at the front end of the vehicle and secondly predict the airflow pattern inside the chamber, considering chamber inlet air, chamber outlet air, exhaust outlet, duct outlet and flow pattern around the vehicle.
Technical Paper

USE OF CFD SIMULATION TO PREDICT CAVITATION IN AUTOMOTIVE HEATER CORES

2005-11-22
2005-01-4027
Several heater cores failed due to erosion by cavitation. After analysis, most of failures were explained by the presence of impurities in the heater core. It was then decided with the customer to use CFD simulation in order to prove that the cavitation was not caused by design concept of the tank. In this paper, we present the results of heater core simulations done in 2D and in 3D with Fluent. The objective is to simulate the pressure and velocity distribution within the heater core and to verify if the zones of low pressure are below the saturation vapour pressure of the fluid causing cavitation. In these areas, the deterioration of the tubes might occur due to erosion by cavitation.
Technical Paper

Transient Simulation of DGI Engine Injector with Needle Movement

2002-10-21
2002-01-2663
Utilization of direct injection systems is one of the most promising technologies for fuel economy improvement for SI engine powered passenger cars. Engine performance is essentially influenced by the characteristics of the injection equipment. This paper will present CFD analyses of a swirl type GDI injector carried out with the Multiphase Module of AVL's FIRE/SWIFT CFD code. The simulations considered three phases (liquid fuel, fuel vapor, air) and mesh movement. Thus the transient behavior of the injector can be observed. The flow phenomena known from measurement and shown by previous simulation work [2, 7, 10, 11] were reproduced. In particular the simulations shown in this paper could explain the cause for the outstanding atomization characteristics of the swirl type injector, which are caused by cavitation in the nozzle hole.
Technical Paper

Thermally-Induced Microstructural Changes in a Three-Way Automotive Catalyst

1997-10-01
972905
The use of advanced electron microscopy techniques to characterize both the bulk and near-atomic level microstructural evolution of catalyst materials during different dynamometer/vehicle aging cycles is an integral part of understanding catalyst deactivation. The study described here was undertaken to evaluate thermally-induced microstructural changes which caused the progressive loss of catalyst performance in a three-way automotive catalyst. Several different catalyst processing variables, for example changing the washcoat ceria content, were also evaluated as a function of aging cycle and thermal history. A number of thermally-induced microstructural changes were identified using high resolution electron microscopy techniques that contributed to the deactivation of the catalyst, including sintering of all washcoat constituents, γ-alumina transforming to α-, β-, and δ-alumina, precious metal redistribution, and constituent encapsulation.
Technical Paper

Thermal Comfort Prediction and Validation in a Realistic Vehicle Thermal Environment

2012-04-16
2012-01-0645
The focus of this study is to validate the predictive capability of a recently developed physiology based thermal comfort modeling tool in a realistic thermal environment of a vehicle passenger compartment. Human subject test data for thermal sensation and comfort was obtained in a climatic wind tunnel for a cross-over vehicle in a relatively warm thermal environment including solar load. A CFD/thermal model that simulates the vehicle operating conditions in the tunnel, is used to provide the necessary inputs required by the stand-alone thermal comfort tool. Comparison of the local and the overall thermal sensation and comfort levels between the human subject test and the tool's predictions shows a reasonably good agreement. The next step is to use this modeling technique in designing and developing energy-efficient HVAC systems without compromising thermal comfort of the vehicle occupants.
Technical Paper

The Solution for Steady State Temperature Distribution in Monolithic Catalytic Converters

2001-03-05
2001-01-0941
This paper presents a simplified thermal model for round catalytic converters in steady state operation. Using this model, the analytic solution for the temperature distribution in the monolithic substrate is obtained. This analytic solution in the substrate is, then, combined with those in the intumescent mat [1] and the metal shell to obtain the temperature profile in the radial direction of the converter except for three unknown temperatures at the three material interfaces, which can be solved using an Excel application program. This analytical temperature solution facilitates the studies of the effects of various design parameters such as the exhaust gas temperature, exhaust gas flow rate, substrate cell geometry, converter dimensions, and ambient temperature and flow, etc.
Technical Paper

The Effect of Changes in Ambient and Coolant Radiator Inlet Temperatures and Coolant Flowrate on Specific Dissipation

2000-03-06
2000-01-0579
In this paper, a theoretical model for the calculation of Specific Dissipation (SD) was developed. Based on the model, the effect of ambient and coolant radiator inlet temperatures on SD has been predicted. Results indicate that the effect of ambient and coolant inlet temperature variation on SD is small (less than 2%) when ambient temperature varies between 10 and 50°C and coolant radiator inlet temperature between 60 and 120°C. The effect of coolant flowrate on SD is larger if there is a larger flowrate variation. Experimental results indicate that a 1 % variation at 1.0 L/s will cause about ±0.6% SD variation. Therefore the flowrate should be carefully controlled.
Technical Paper

The BRAKE Project - Centralized Versus Distributed Redundancy for Brake-by-Wire Systems

2002-03-04
2002-01-0266
This paper presents the objectives and preliminary results of the BRAKE project - a joint effort of Delphi Automotive Systems, Infineon Technologies, Volvo Car Corporation and WindRiver. The objective of this project is to use microelectronics technologies to design a distributed Brake-by-Wire system including: A distributed fault tolerant system for enhanced safety An extension of the OSEK based operating system for a distributed time triggered architecture An open interface between vehicle control, and brake system control The results comprise the requirements, interface specification (see [1]), a full simulation model, a hardware-in-the-loop bench, and a demonstration vehicle. The application has been developed using advanced automatic code generation for Infineon's TriCore based automotive microcontrollers.
Technical Paper

The Assembly Deformation and Pressure of Stuffed Catalytic Converter Accounting for the Hysteresis Behavior of Pressure vs Density Curve of the Intumescent Mat

2000-03-06
2000-01-0223
Accurately predicting converter assembly deformation and mat pressure is essential in converter packaging design and manufacturing. In stuffing packaging, the annulus between the deformed shell and the catalyst is larger than that between the stuffing cone and the catalyst. As a result, the mat expands and undergoes unloading process. Tests show that the mat exhibits different loading and unloading characteristics. Using such a hysteresis mat pressure vs density curve in finite element analysis, the computed converter deformations closely agree with test data. Conversly, neglecting the mat hysteresis behavior may overestimate the deformation and pressure by a factor of three to four.
Technical Paper

System Modeling of A Damper Module

2000-03-06
2000-01-0727
A recent trend within the automotive industry has been an emphasis on the development of modular assemblies for future vehicle applications. This trend has created a need for the development of methods to predict the performance of modules within the vehicle environment. In particular, the development of system models that account for the interactions between components within a modular assembly is necessary to insure that a module is properly designed. This paper describes a finite element system model of a damper module as installed in a McPherson strut front suspension. The modeling techniques used to construct the components within the modular assembly are discussed. The results of a study of the structural behavior of a damper module model subjected to quasi-static loading conditions are presented. Additionally, the effects of changes in individual component specifications on the overall system response are considered and the results are displayed.
Technical Paper

Solid Oxide Fuel Cell Auxiliary Power Unit - A Paradigm Shift in Electric Supply for Transportation

2000-11-01
2000-01-C070
Delphi Automotive Systems and BMW have been jointly developing Solid Oxide Fuel Cell (SOFC) technology for application in the transportation industry primarily as an on-board Auxiliary Power Unit (APU). In the first application of this joint program, the APU will be used to power an electric air conditioning system without the need for operating the vehicle engine. The SOFC-based APU technology has the potential to provide a paradigm shift in the supply of electric power for passenger cars. Furthermore, supplementing the conventional fuel with reformate in the internal combustion engine, extremely low emissions and high system efficiencies are possible. This is consistent with the increasing power demands in automobiles in the new era of more comfort and safety along with environmental friendliness.
Technical Paper

Solid Oxide Fuel Cell Auxiliary Power Unit - A Development Update

2002-03-04
2002-01-0411
Delphi Automotive Systems and BMW are jointly developing Solid Oxide Fuel Cell (SOFC) technology for application in the transportation industry primarily as an on-board Auxiliary Power Unit (APU). In the first application of this joint program, the APU will be used to power an electric air conditioning system without the need for operating the vehicle engine. The SOFC based APU technology has the potential to provide a paradigm shift in the supply of electric power for passenger cars. Furthermore, by supplementing the conventional fuel with reformate in the internal combustion engine, extremely low emissions and high system efficiencies are possible. This is consistent with the increasing power demands in automobiles in the new era of more comfort and safety along with environmental friendliness. Delphi Automotive Systems and BMW were successful in demonstrating an Auxiliary Power Unit (APU) based on Solid Oxide Fuel Cell (SOFC) technology in February, 2001.
Journal Article

Solder Void Modeling and Its Influence on Thermal Characteristics of MOSFETs in Automotive Electronics Module

2017-03-28
2017-01-0011
Current generation automobiles are controlled by electronic modules for performing various functions. These electronic modules have numerous semiconductor devices mounted on printed circuit boards. Solders are generally used as thermal interface material between surface mount devices and printed circuit boards (PCB) for efficient heat transfer. In the manufacturing stage, voids are formed in solders during reflow process due to outgassing phenomenon. The presence of these voids in solder for power packages with exposed pads impedes heat flow and can increase the device temperature. Therefore it is imperative to understand the effect of solder voids on thermal characteristics of semiconductor devices. But the solder void pattern will vary drastically during mass manufacturing. Replicating the exact solder void pattern and doing detail simulation to predict the device temperature for each manufactured module is not practical.
Journal Article

Real-time Sensing of Particulate Matter in a Vehicle Exhaust System

2017-03-28
2017-01-1639
Onboard diagnostic regulations require performance monitoring of diesel particulate filters used in vehicle aftertreatment systems. Delphi has developed a particulate matter (PM) sensor to perform this function. The objective of this sensor is to monitor the soot (PM) concentration in the exhaust downstream of the diesel particulate filter which provides a means to calculate filter efficiency. The particulate matter sensor monitors the deposition of soot on its internal sensing element by measuring the resistance of the deposit. Correlations are established between the soot resistance and soot mass deposited on the sensing element. Currently, the sensor provides the time interval between sensor regeneration cycles, which, with the knowledge of the exhaust gas flow parameters, is correlated to the average soot concentration.
Technical Paper

Rapid Algorithm Development Tools Applied to Engine Management Systems

1998-02-23
980799
Intense competition in the automotive industry requires continuous reduction in innovation cycle time, even as corporations are downsizing and system complexity is increasing. Subsequently, the application of recently introduced Rapid Algorithm Development (RAD) tools has facilitated significant advances in the development of embedded control systems. The RAD steps include system modeling, control algorithm design, simulation analysis, automated calibration design, and vehicle implementation through automatic code generation. The application of RAD tools and the associated benefits are described, specifically in the context of Engine Management Systems (EMS). Such benefits include significant reductions in development cycle time, open architecture, automated calibration, and information reuse.
Technical Paper

Powertrains of the Future: Reducing the Impact of Transportation on the Environment

1999-03-01
1999-01-0991
Tomorrow's winning powertrain solutions reside in those technology combinations providing optimized propulsion systems with zero emissions and no cost or performance penalty compared with today's vehicles. The recent Kyoto Protocol for CO2 reduction and the California Air Resources Board (CARB) thrust for zero emission vehicles along with the European Regulatory community, motivate car manufacturers to adopt new light body structures with low aerodynamic drag coefficients, low-rolling resistance and the highest efficiency powertrains. The environmental equation expresses car manufacturers aptitude and desire to create zero emission vehicles at acceptable levels of performance unlike limited range electrical powered vehicle products. The cheapest solution to the environmental equation remains the conventional internal combustion engine ($30 to $50 per kW).
Technical Paper

Optimization of Oxygen Sensor

2000-03-06
2000-01-1364
Optimization of the mechanical aspects of a heated conical oxygen sensor for desired performances, such as low heater power, good poison resistance, fast light-off, and broad temperature range, etc. was achieved with computer modeling. CFD analysis was used to model the flow field in and around a sensor in an exhaust pipe to predict the convection coefficients, poisoning, and switching time. Heat transfer analysis coupled with electrical heating was applied to predict temperature and light-off time. Results of the optimization are illustrated, with good agreements between modeling and testing.
Technical Paper

Open-Interface Definitions for Automotive Systems1 Application to a Brake by Wire System

2002-03-04
2002-01-0267
Today automotive system suppliers develop more-or-less independent systems, such as brake, power steering and suspension systems. In the future, car manufacturers like Volvo will build up vehicle control systems combining their own algorithms with algorithms provided by automotive system suppliers. Standardization of interfaces to actuators, sensors and functions is an important enabler for this vision and will have major consequences for functionality, prices and lead times, and thus affects both vehicle manufacturers and automotive suppliers. The investigation of the level of appropriate interfaces, as part of the European BRAKE project, is described here. Potential problems and consequences are discussed from both a technical and a business perspective. This paper provides a background on BRAKE and on the functional decomposition upon which the interface definitions are based. Finally, the interface definitions for brake system functionality are given.
Technical Paper

Numerical Prediction of Brake Fluid Temperature Rise During Braking and Heat Soaking

1999-03-01
1999-01-0483
Long repetitive braking, such as one which occurs during a mountain descent, will result in a brake fluid temperature rise and may cause brake fluid vaporization. This may be a concern particularly for passenger cars equipped with aluminum calipers and with a limited air flow to the wheel brake systems. This paper describes the computer modeling techniques to predict the brake fluid temperature rise as well as other brake component temperatures during braking and heat soaking. Numerical results are compared to the measured vehicle data and the effects of relevant brake system parameters on the fluid temperature are investigated. The techniques developed in this study will help brake engineers to build a safer brake system and reduce the extensive vehicle tests currently required.
Technical Paper

Mean Value Engine Modelling of an SI Engine with EGR

1999-03-01
1999-01-0909
Mean Value Engine Models (MVEMs) are simplified, dynamic engine models which are physically based. Such models are useful for control studies, for engine control system analysis and for model based engine control systems. Very few published MVEMs have included the effects of Exhaust Gas Recirculation (EGR). The purpose of this paper is to present a modified MVEM which includes EGR in a physical way. It has been tested using newly developed, very fast manifold pressure, manifold temperature, port and EGR mass flow sensors. Reasonable agreement has been obtained on an experiemental engine, mounted on a dynamometer.
X