Refine Your Search

Topic

Author

Search Results

Technical Paper

Zero Resistance Technology (ZRT)

2005-11-22
2005-01-4109
Delphi's Zero Resistance Technology (ZRT) is a revolutionary new product/process that enables the reduction of mass and volume from a traditional wiring assembly. ZRT is defined as a minimal (zero) resistance change over time. The ZRT product is an electrical/electronic connection system which provides a viable solution for high density and limited space wiring applications. The ZRT process is a semi-automated wiring harness manufacturing system with flexibility to produce harnesses to the customer demand.
Technical Paper

Using the Six Sigma Methodology for Process Variation Reduction

2007-11-28
2007-01-2872
This paper is about the use of the Six Sigma Methodology, to solve variation problems in the manufacture area, at one of the Delphi Automotive Systems unit that manufacturer electrical harness. The DMAIC framework was followed, the improvements were done, eliminating the rots causes, and the use of Six Sigma methodology, was showed very efficient in solve problems. The methodology power, is in using a structured frame work, the DMAIC (Define-Measure-Analyze-Improve-Control), completing by quality quality tools (Pareto Chart, Five Why's, Cause and Effect Diagram) and statistical analyses, for example: variance analyses, hypotheses tests and Design of Experiments.
Technical Paper

USE OF CFD SIMULATION TO PREDICT CAVITATION IN AUTOMOTIVE HEATER CORES

2005-11-22
2005-01-4027
Several heater cores failed due to erosion by cavitation. After analysis, most of failures were explained by the presence of impurities in the heater core. It was then decided with the customer to use CFD simulation in order to prove that the cavitation was not caused by design concept of the tank. In this paper, we present the results of heater core simulations done in 2D and in 3D with Fluent. The objective is to simulate the pressure and velocity distribution within the heater core and to verify if the zones of low pressure are below the saturation vapour pressure of the fluid causing cavitation. In these areas, the deterioration of the tubes might occur due to erosion by cavitation.
Technical Paper

Thermal Electric Analysis of Bond Wires Used in Automotive Electronic Modules

2015-04-14
2015-01-0195
Bond wires are used in automotive electronic modules to carry current from external harness to components where flexibility under thermal cyclic loading is very essential between PCB (Printed Circuit Board) and connectors. They are very thin wires (few μm) made up of gold, aluminum or copper and have to undergo mechanical reliability to withstand extreme mechanical and thermal loads during different vehicle operation scenarios. Thermal reliability of bond wire is to make sure that it can withstand prescribed electric current under given boundary conditions without fusing thereby retaining electronic module's functionality. While carrying current, bond wire by virtue of its nature resists electric current flow and generates heat also called as joule heating. Joule heating is proportional to current flow and electrical resistance and if not handled properly can lead to thermal run away conditions.
Technical Paper

The Solution for Steady State Temperature Distribution in Monolithic Catalytic Converters

2001-03-05
2001-01-0941
This paper presents a simplified thermal model for round catalytic converters in steady state operation. Using this model, the analytic solution for the temperature distribution in the monolithic substrate is obtained. This analytic solution in the substrate is, then, combined with those in the intumescent mat [1] and the metal shell to obtain the temperature profile in the radial direction of the converter except for three unknown temperatures at the three material interfaces, which can be solved using an Excel application program. This analytical temperature solution facilitates the studies of the effects of various design parameters such as the exhaust gas temperature, exhaust gas flow rate, substrate cell geometry, converter dimensions, and ambient temperature and flow, etc.
Technical Paper

Rheocasting of Semi-Solid A357 Aluminum

2000-03-06
2000-01-0059
The most popular aluminum alloys for semi-solid automotive components are A356 and A357. The density of rheocast semi-solid A357 is higher than die cast A357 and allows for both T5 and T6 heat treatment. The mechanical properties of rheocast semi-solid A357 was found to be more dependent upon the heat treat schedule and casting soundness than by the solid content of the semi-solid slurry or the globule shape.
Technical Paper

Resistance Welding for Automotive Wiring Harness Connection - Small Gauge Cables

2012-10-02
2012-36-0153
Miniaturization is an important trend in many technology segments, once it can enable innovative applications generating new markets. This trend was begun in electronics industry after World War II and has spawned changes into automotive sector also. For Automotive Wiring Harness, miniaturization is clearly presented in most of the components, mainly because of its benefits like the potential of mass reduction, cost reduction and efficiency improvement. Furthermore the main voice of customer points to cable gauge reduction that represents a considerable challenge for connection manufacturing process due to quality control limitations presented by conventional crimp process for 0,35 [mm₂] cables and smaller. According to that, the scope of this article is to present, in details, a manufacturing process optimization for an alternative and more robust technology of joining copper stranded cables to tin brass terminals used on automotive wiring harness, Resistance Welding.
Technical Paper

Reliability of Resonant Micromachined Sensors and Actuators

2001-03-05
2001-01-0618
There are an increasing number of applications for resonant micromachines. Accelerometers, angular rate sensors, voltage controlled oscillators, pressure and chemical sensors have been demonstrated using this technology. Several of these devices are employed in vehicles. Vibrating devices have been made from silicon, quartz, GaAs, nickel and aluminum. Resonant microsystems are in constant motion and so present new challenges in the area of reliability for vehicular applications. The impact of temperature extremes, cyclic fatigue, stiction, thermal and mechanical shock on resonant device performance is covered.
Technical Paper

Rapid Algorithm Development Tools Applied to Engine Management Systems

1998-02-23
980799
Intense competition in the automotive industry requires continuous reduction in innovation cycle time, even as corporations are downsizing and system complexity is increasing. Subsequently, the application of recently introduced Rapid Algorithm Development (RAD) tools has facilitated significant advances in the development of embedded control systems. The RAD steps include system modeling, control algorithm design, simulation analysis, automated calibration design, and vehicle implementation through automatic code generation. The application of RAD tools and the associated benefits are described, specifically in the context of Engine Management Systems (EMS). Such benefits include significant reductions in development cycle time, open architecture, automated calibration, and information reuse.
Technical Paper

Profitable Recycling of Automotive Wiring Harnesses

2000-03-06
2000-01-0736
Legal requirements, especially in the European Union, rising concern about our environment and economic reasons force us to look at End of Life Vehicles (ELV's) more critically. This paper describes some projects where recycling technologies have been developed showing clearly that recycling can be profitable. The projects demonstrate the recycling of Polyvinyl Chloride (PVC) insulation in automotive wiring, a separation technology for different plastic materials by melting point, the treatment of laminated materials like flexible printed circuits, some ideas of fastening systems, suited for disassembly and several basic rules for making recycling easier and profitable.
Technical Paper

Paradox of Miniaturization Trend Versus Hybrid Electrical Vehicle Requirements

2012-10-02
2012-36-0262
In recent years, a number of key influences are contributing to accelerate technological innovation in the automotive industrial sector. Concerns about renewable energy resource, fossil-fuels crises and higher gasoline prices, global warming awareness and environmental impacts, scarcity of minerals/metals and electronics demands rising are some of the major challenges for vehicle automakers and their suppliers. The interest in alternative fuel vehicles, especially hybrid-electrical vehicles (HEV) or renewable energy power concepts for road vehicles has become intensified and represents a significant area of research and development in order to meet nowadays global demands. However because of Hybrid Vehicles unique Power Supply System the electrical/electronic architecture (E/E) is sophisticated, requesting more robust sealing and a particular wiring harness components, such as connector, terminals and cables.
Technical Paper

Optimization of Oxygen Sensor

2000-03-06
2000-01-1364
Optimization of the mechanical aspects of a heated conical oxygen sensor for desired performances, such as low heater power, good poison resistance, fast light-off, and broad temperature range, etc. was achieved with computer modeling. CFD analysis was used to model the flow field in and around a sensor in an exhaust pipe to predict the convection coefficients, poisoning, and switching time. Heat transfer analysis coupled with electrical heating was applied to predict temperature and light-off time. Results of the optimization are illustrated, with good agreements between modeling and testing.
Technical Paper

Numerical Prediction of Brake Fluid Temperature Rise During Braking and Heat Soaking

1999-03-01
1999-01-0483
Long repetitive braking, such as one which occurs during a mountain descent, will result in a brake fluid temperature rise and may cause brake fluid vaporization. This may be a concern particularly for passenger cars equipped with aluminum calipers and with a limited air flow to the wheel brake systems. This paper describes the computer modeling techniques to predict the brake fluid temperature rise as well as other brake component temperatures during braking and heat soaking. Numerical results are compared to the measured vehicle data and the effects of relevant brake system parameters on the fluid temperature are investigated. The techniques developed in this study will help brake engineers to build a safer brake system and reduce the extensive vehicle tests currently required.
Technical Paper

Laser Welding: An Exploratory Study towards Continuous Improvement on Stainless Steel Welding Joints

2009-10-06
2009-36-0330
The utilization of Laser welding process has increased during last years in several areas of industry, due to many benefits that can be achieved with this technology, such as: flexibility, productivity and quality. Thus, the optimization of Laser welding processes has been considered as a “green field” to be explored by Laser manufacturers, automation companies and process/project engineers. Nowadays there are few researches that provide a roadmap for Laser welding processes improvement that approaches both the aspects and characteristics applied to evaluate the Laser weld application performance. Therefore, this paper has per its main purpose through an exploratory study to provide parameters toward continuous improvement of Laser welding process considering both types of Lasers: Laser spot weld and Laser seam weld of stainless steel joints, thus this work may be considered as theoretical and practical reference to be applied by people involved with Laser welding applications.
Technical Paper

LIN Bus and its Potential for Use in Distributed Multiplex Applications

2001-03-05
2001-01-0072
The increasing features and complexity of today's automotive architectures are becoming increasingly difficult to manage. Each new innovation typically requires additional mechanical actuators and associated electrical controllers. The sheer number of black boxes and wiring are being limited not by features or cost but by the inability to physically assemble them into a vehicle. A new architecture is required which will support the ability to add new features but also enable the Vehicle Assembly Plants to easily assemble and test each subsystem. One such architecture is a distributed multiplex arrangement that reduces the number of wires while enabling flexibility and expandability. Previous versions have had to deal with issues such as noise immunity at high switching currents. The LIN Bus with its low cost and rail-to-rail capability may be the key enabling technology to make the multiplexed architecture a reality.
Technical Paper

Instrument Panel Skin Manufactured with 100% Recycled TPO Material

2002-03-04
2002-01-1262
Desiring to push thermoplastic poly-olefin (TPO) technology to its fullest limits and to confirm our position as the leader in the manufacturing of environmentally friendly TPO instrument panels, we have designed a process to manufacture 100% recycled instrument panel skins. This closed-loop process begins with extruding 100% recycled TPO flake into sheet stock to be painted and vacuum formed. The painted sheet is vacuum formed and the offal is ground into regrind flake, ready to be extruded again, thus completing the closed-loop process. This paper will describe a 100% closed loop recycling process for TPO instrument panels, discuss the intense validation process for recycled material and prove the robustness and durability of this interior solution.
Technical Paper

Individual Cylinder Fuel Control with a Switching Oxygen Sensor

1999-03-01
1999-01-0546
In this paper we discuss in detail an algorithm that addresses cylinder-to-cylinder imbalance issues. Maintaining even equivalence-ratio (ϕ) control across all the cylinders of an engine is confounded by imbalances which include fuel-injector flow variations, fresh-air intake maldistribution and uneven distribution of Exhaust Gas Re-circulation (EGR). Moreover, in markets that are growing increasingly cost conscious, with ever tightening emissions regulations, correcting for such mismatches must not only be done, but done at little or no additional cost. To address this challenge, we developed an Individual Cylinder Fuel Control (ICFC) algorithm that estimates each cylinder's individual ϕ and then compensates to correct for any imbalance using only existing production hardware. Prior work in this area exists1,2, yet all disclosed production-intent work was performed using wide-range oxygen sensors, representing cost increases.
Technical Paper

Implementation of Lead-Free Solder for Automotive Electronics

2000-03-06
2000-01-0017
Lead-free solders for electronics have been actively pursued since the early 1990's here and abroad for environmental, legislative, and competitive reasons. The National Center for Manufacturing Sciences (NCMS-US)1, the International Tin Research Institute (ITRI-UK)2, Swedish Institute of Production Engineering Research (IVF-Sweden)3, Japan Institute of Electronics Packaging (JIEP Japan)4, Improved Design Life and Environmentally Aware Manufacture of Electronics Assemblies by Lead-free Soldering (IDEALS-Europe)5, and, more recently, the National Electronics Manufacturing Initiative (NEMI-US)6 have been aggressively seeking lead-free solutions The automotive industry has some unique requirements that demand extensive testing of new materials and processes prior to implementation. The specific steps taken at Delphi Automotive Systems with lead-free solder will be described along with the lessons learned along the way.
Technical Paper

Impact of Alkali Metals on the Performance and Mechanical Properties of NOx Adsorber Catalysts

2002-03-04
2002-01-0734
Performance of two types of NOx adsorber catalysts, one based on Ba and the other based on Ba with alkali metals, was compared fresh and after thermal aging. Incorporation of sodium(Na), potassium(K) and cesium(Cs) into NOx adsorber washcoat containing barium significantly increases the NOx conversions in the temperature range of 350-600°C over that of the alkali metal free NOx adsorber catalysts. NOx performance benefit and HC performance penalty were observed on both engine dynamometer and vehicle tests for the “Ba+alkali metals” NOx adsorber catalysts. “Ba+alkali metals” NOx adsorber catalysts also demonstrate superior sulfur resistance with better NOx performance after repeated sulfur poisonings and desulfations over the “Ba based” NOx adsorber catalysts.
Technical Paper

Globalization of the Design for Manufacturability/Assembly Process within the Automotive Wiring Assembly Business

1999-03-01
1999-01-0052
Automotive wiring assembly design and manufacturing has evolved from a locally based business to a global business. It is common today to engineer the design of a wiring assembly in one region of the world, to manufacture it in a second region, and to assemble it into the vehicle in a third region. This creates a need for global collaboration, training and communications. Design for Manufacturability (DFM) is a tool that can aid in this, in developing common processes globally, and reducing the cost and design complexity of the product in the early design stages. To develop a global DFM process, an organization must develop and implement a strategy. This paper will review the approach that an automotive wiring assembly supplier adopted. It will enumerate the benefits of developing a global Design for Manufacturability process, selecting a champion, and using a twelve-step plan to integrate DFM into each region.
X