Refine Your Search

Topic

Author

Search Results

Technical Paper

Variable Effort Steering for Vehicle Stability Enhancement Using an Electric Power Steering System

2000-03-06
2000-01-0817
This paper investigates a method for improving vehicle stability by incorporating feedback from a yaw rate sensor into an electric power steering system. Presently, vehicle stability enhancement techniques are an extension of antilock braking systems in aiding the driver during vehicle maneuvers. One of the contributors to loss of vehicle control is the reduction in tactile feedback from the steering handwheel when driving on wet or icy pavement. This paper presents research indicating that the use yaw rate feedback improves vehicle stability by increasing the amount of tactile feedback when driving under adverse road conditions.
Technical Paper

Transient Simulation of DGI Engine Injector with Needle Movement

2002-10-21
2002-01-2663
Utilization of direct injection systems is one of the most promising technologies for fuel economy improvement for SI engine powered passenger cars. Engine performance is essentially influenced by the characteristics of the injection equipment. This paper will present CFD analyses of a swirl type GDI injector carried out with the Multiphase Module of AVL's FIRE/SWIFT CFD code. The simulations considered three phases (liquid fuel, fuel vapor, air) and mesh movement. Thus the transient behavior of the injector can be observed. The flow phenomena known from measurement and shown by previous simulation work [2, 7, 10, 11] were reproduced. In particular the simulations shown in this paper could explain the cause for the outstanding atomization characteristics of the swirl type injector, which are caused by cavitation in the nozzle hole.
Technical Paper

The New Wireless Frontier: Home and Vehicle Connectivity

2004-10-18
2004-21-0068
Our customers expect in their vehicles the same constant connectivity that they experience in their homes through high speed internet portals. New services based on these advances will be transparent and ubiquitous - completely integrated into our lives, just as electricity comes to the wall socket or water from the faucet. The Wi-Fi Radio implements this vision using Wireless Fidelity (Wi-Fi) based on the suite of IEEE 802.11 standards. Drivers have constant wireless connectivity and personalized digital content made available to them through the Wi-Fi Radio. Ford and our partner Delphi developed the Wi-Fi Radio to overcome the inherent functional and packaging limitations of our vehicles, to quickly introduce new technology at affordable prices and to seamlessly integrate new services into the vehicle. We chose the radio as the integration site because the radio is accessible to every customer and affordable on every vehicle.
Technical Paper

Solid Oxide Fuel Cell Auxiliary Power Unit - A Paradigm Shift in Electric Supply for Transportation

2000-11-01
2000-01-C070
Delphi Automotive Systems and BMW have been jointly developing Solid Oxide Fuel Cell (SOFC) technology for application in the transportation industry primarily as an on-board Auxiliary Power Unit (APU). In the first application of this joint program, the APU will be used to power an electric air conditioning system without the need for operating the vehicle engine. The SOFC-based APU technology has the potential to provide a paradigm shift in the supply of electric power for passenger cars. Furthermore, supplementing the conventional fuel with reformate in the internal combustion engine, extremely low emissions and high system efficiencies are possible. This is consistent with the increasing power demands in automobiles in the new era of more comfort and safety along with environmental friendliness.
Technical Paper

Solid Oxide Fuel Cell Auxiliary Power Unit - A Development Update

2002-03-04
2002-01-0411
Delphi Automotive Systems and BMW are jointly developing Solid Oxide Fuel Cell (SOFC) technology for application in the transportation industry primarily as an on-board Auxiliary Power Unit (APU). In the first application of this joint program, the APU will be used to power an electric air conditioning system without the need for operating the vehicle engine. The SOFC based APU technology has the potential to provide a paradigm shift in the supply of electric power for passenger cars. Furthermore, by supplementing the conventional fuel with reformate in the internal combustion engine, extremely low emissions and high system efficiencies are possible. This is consistent with the increasing power demands in automobiles in the new era of more comfort and safety along with environmental friendliness. Delphi Automotive Systems and BMW were successful in demonstrating an Auxiliary Power Unit (APU) based on Solid Oxide Fuel Cell (SOFC) technology in February, 2001.
Technical Paper

Powertrains of the Future: Reducing the Impact of Transportation on the Environment

1999-03-01
1999-01-0991
Tomorrow's winning powertrain solutions reside in those technology combinations providing optimized propulsion systems with zero emissions and no cost or performance penalty compared with today's vehicles. The recent Kyoto Protocol for CO2 reduction and the California Air Resources Board (CARB) thrust for zero emission vehicles along with the European Regulatory community, motivate car manufacturers to adopt new light body structures with low aerodynamic drag coefficients, low-rolling resistance and the highest efficiency powertrains. The environmental equation expresses car manufacturers aptitude and desire to create zero emission vehicles at acceptable levels of performance unlike limited range electrical powered vehicle products. The cheapest solution to the environmental equation remains the conventional internal combustion engine ($30 to $50 per kW).
Journal Article

Operation of a Gasoline Direct Injection Compression Ignition Engine on Naphtha and E10 Gasoline Fuels

2016-04-05
2016-01-0759
Gasoline Direct Injection Compression Ignition (GDCI) is a partially premixed low temperature combustion process that has demonstrated high fuel efficiency with full engine load range capabilities, while emitting very low levels of particulate matter (PM) and oxides of nitrogen (NOx). In the current work, a comparison of engine combustion, performance, and emissions has been made among E10 gasoline and several full-boiling range naphtha fuels on a Gen 2 single-cylinder GDCI engine with compression ratio of 15:1. Initial results with naphtha demonstrated improved combustion and efficiency at low loads. With naphtha fuel, hydrocarbon and carbon monoxide emissions were generally reduced at low loads but tended to be higher at mid-loads despite the increased fuel reactivity. At higher loads, naphtha required less boost pressure compared to gasoline, however, up to 20% additional EGR was required to maintain combustion phasing.
Technical Paper

Mean Value Engine Modelling of an SI Engine with EGR

1999-03-01
1999-01-0909
Mean Value Engine Models (MVEMs) are simplified, dynamic engine models which are physically based. Such models are useful for control studies, for engine control system analysis and for model based engine control systems. Very few published MVEMs have included the effects of Exhaust Gas Recirculation (EGR). The purpose of this paper is to present a modified MVEM which includes EGR in a physical way. It has been tested using newly developed, very fast manifold pressure, manifold temperature, port and EGR mass flow sensors. Reasonable agreement has been obtained on an experiemental engine, mounted on a dynamometer.
Technical Paper

Maximum Electrical Energy Availability With Reasonable Components

2000-11-01
2000-01-C071
The electric power required in automotive systems is quickly reaching a level that significantly impacts costs and fuel consumption. This drives the need to reconsider an electric energy management function. Fast evolving factors such as increasing power usage, and stricter engine management and reliability requirements necessitate a global vehicle approach to energy management. Innovations such as new powernet concepts (42 volt or dual voltage systems), new component technologies (high-performance energy storage, high efficiency and controllable generators), and global electronic and software architecture concepts will enable this new energy management concept. This paper describes key issues to maximize energy availability with reasonable components.
Technical Paper

Individual Cylinder Fuel Control with a Switching Oxygen Sensor

1999-03-01
1999-01-0546
In this paper we discuss in detail an algorithm that addresses cylinder-to-cylinder imbalance issues. Maintaining even equivalence-ratio (ϕ) control across all the cylinders of an engine is confounded by imbalances which include fuel-injector flow variations, fresh-air intake maldistribution and uneven distribution of Exhaust Gas Re-circulation (EGR). Moreover, in markets that are growing increasingly cost conscious, with ever tightening emissions regulations, correcting for such mismatches must not only be done, but done at little or no additional cost. To address this challenge, we developed an Individual Cylinder Fuel Control (ICFC) algorithm that estimates each cylinder's individual ϕ and then compensates to correct for any imbalance using only existing production hardware. Prior work in this area exists1,2, yet all disclosed production-intent work was performed using wide-range oxygen sensors, representing cost increases.
Technical Paper

Impact of Alkali Metals on the Performance and Mechanical Properties of NOx Adsorber Catalysts

2002-03-04
2002-01-0734
Performance of two types of NOx adsorber catalysts, one based on Ba and the other based on Ba with alkali metals, was compared fresh and after thermal aging. Incorporation of sodium(Na), potassium(K) and cesium(Cs) into NOx adsorber washcoat containing barium significantly increases the NOx conversions in the temperature range of 350-600°C over that of the alkali metal free NOx adsorber catalysts. NOx performance benefit and HC performance penalty were observed on both engine dynamometer and vehicle tests for the “Ba+alkali metals” NOx adsorber catalysts. “Ba+alkali metals” NOx adsorber catalysts also demonstrate superior sulfur resistance with better NOx performance after repeated sulfur poisonings and desulfations over the “Ba based” NOx adsorber catalysts.
Journal Article

Gasoline Fuels Assessment for Delphi’s Second Generation Gasoline Direct-Injection Compression Ignition (GDCI) Multi-Cylinder Engine

2017-03-28
2017-01-0743
Fuel efficiency and emission performance sensitivity to fuel reactivity was examined using Delphi’s second-generation Gasoline Direct-Injection Compression Ignition (Gen 2.0 GDCI) multi-cylinder engine. The study was designed to compare a US market gasoline (RON 92 E10) to a higher reactivity gasoline (RON 80) at four operating conditions ranging from light load of 800 rpm / 2.0 bar gross indicated-mean-effective pressure (IMEPg) to medium load of 2000 rpm / 10.0 bar IMEPg. The experimental assessment indicated that both gasolines could achieve good performance and Tier 3 emission targets at each of the four operating conditions. Relative to the RON 92 E10 gasoline, better fuel consumption and engine-out emissions performance was achieved when using RON 80 gasoline; consistent with our previously reported single-cylinder engine research [1].
Technical Paper

Flow Simulation of a Direct-Injection Gasoline Diaphragm Fuel Pump with Structural Interactions

2000-03-06
2000-01-1047
The fluid flow in a direct-injection gasoline diaphragm fuel pump is analyzed using a multi-physics simulation program. The analysis accounts for fully coupled fluid-structure interactions (FSI), the effects of the diaphragm movement and its deformation, the FSI between the diaphragm and the fluid, the FSI between the inlet/outlet valves and the fluid, and the solid-solid contact between the inlet/outlet valves and the valve seats. The flow rate of the fuel pump under various cam speeds is examined. The accuracy of the predictions for the flow rate of the fuel pump is assessed through comparisons with the experimental data, and moderately good agreement is obtained. In addition, some conclusions based on this study are summarized for reference.
Technical Paper

Fast Start-Up On-Board Gasoline Reformer for Near Zero Emissions in Spark-Ignition Engines

2002-03-04
2002-01-1011
This paper describes recent progress in our program to develop a gasoline-fueled vehicle with an on-board reformer to provide near-zero tailpipe emissions. An on-board reformer converts gasoline (or another hydrocarbon-containing fuel) into reformate, containing hydrogen (H2) and carbon monoxide (CO). Reformate has very wide combustion limits to enable SI engine operation under very dilute conditions (either ultra-lean or with heavy exhaust gas recirculation (EGR) concentrations). In previous publications, we have presented engine dynamometer results showing very low emissions with bottled reformate. This paper shows results from an engine linked to an experimental, fast start-up reformer. We present both performance data for the reformer as well as engine emissions and performance results. Program results continue to show an on-board reforming system to be an attractive option for providing near-zero tailpipe emissions to meet low emission standards.
Technical Paper

Evaluation of a Non-Thermal Plasma System for Remediation of NOx in Diesel Exhaust

1999-10-25
1999-01-3639
With ever more stringent CO2 emissions mandates, many automobile manufacturers are seeking the fuel economy benefits of diesel and lean-burn gasoline engines. At the same time the emissions standards that diesel and gasoline engines will have to meet in the next decade continue to reduce. Proposed solutions for meeting the stringent emissions standards all appear to have limitations, such as propensities to poisoning from sulfur, narrow operating temperature windows, and requirements for controls that give rapid rich excursions. Non-thermal plasma-catalyst systems have shown good performance in bench testing while being largely unaffected by these same issues. A two-stage system with a unique non-thermal plasma reactor combined with a zeolite-based catalyst has been constructed and shown to work over a wide temperature range.
Technical Paper

Evaluation of Propulsion Drive System Technologies for Hybrid Vehicles

2000-04-02
2000-01-1532
This paper summarizes the results of an investigation of high risk, high potential technologies for hybrid vehicle drive applications and investigate potential solutions for the technical risk items associated with these technologies. The study consisted of the design, build, and test of different types of electric machines to understand their performance, efficiency, and manufacturability to develop hybrid vehicles with cost and performance similar to the present day IC engine based vehicles, but with lower emissions and better fuel economy. Machine technologies examined include synchronous reluctance, permanent magnet, and switched reluctance. Test data for various machine technologies is presented along with a discussion of the technical risk associated with each technology.
Technical Paper

Evaluation of Corona Reactors of Several Geometries for a Plasma Assisted Nitrogen Oxide Emission Reduction Device

2000-10-16
2000-01-2899
Proposed vehicle emissions regulations for the near future have prompted automotive manufactures and component suppliers to focus heavily on developing more efficient exhaust aftertreatment devices to lower emissions from spark and compression ignition engines. One of the primary pollutants from lean-burn engines, especially from diesels, are oxides of nitrogen (NOx). Current three-way catalytic converters will not have adequate performance to meet future emission reduction requirements. Therefore, there is a need for researchers and engineers to develop efficient exhaust aftertreatment devices that will reduce NOx emissions from lean-burn engines. These devices must have very high conversion of NOx gases, be unaffected by exhaust-gas impurity such as sulfur, and have minimal impact on vehicle operations and fuel economy. An effective technology for NOx control that is currently receiving a lot of attention is a non-thermal plasma system.
Journal Article

Energy Efficient HVAC System with Spot Cooling in an Automobile - Design and CFD Analysis

2012-04-16
2012-01-0641
Spot, or distributed, cooling and heating is an energy efficient way of delivering comfort to an occupant in the car. This paper describes an approach to distributed cooling in the vehicle. A two passenger CFD model of an SUV cabin was developed to obtain the solar and convective thermal loads on the vehicle, characterize the interior thermal environment and accurately evaluate the fluid-thermal environment around the occupants. The present paper focuses on the design and CFD analysis of the energy efficient HVAC system with spot cooling. The CFD model was validated with wind tunnel data for its overall accuracy. A baseline system with conventional HVAC air was first analyzed at mid and high ambient conditions. The airflow and cooling delivered to the driver and the passenger was calculated. Subsequently, spot cooling was analyzed in conjunction with a much lower conventional HVAC airflow.
Technical Paper

Energy Efficiency Impact of Localized Cooling/Heating for Electric Vehicle

2015-04-14
2015-01-0352
The present paper reports on a study of the HVAC energy usage for an EREV (extended range electric vehicle) implementation of a localized cooling/heating system. Components in the localized system use thermoelectric (TE) devices to target the occupant's chest, face, lap and foot areas. A novel contact TE seat was integrated into the system. Human subject comfort rides and a thermal manikin in the tunnel were used to establish equivalent comfort for the baseline and localized system. The tunnel test results indicate that, with the localized system, HVAC energy savings of 37% are achieved for cooling conditions (ambient conditions greater than 10 °C) and 38% for heating conditions (ambient conditions less than 10 °C), respectively based on an annualized ambient and vehicle occupancy weighted method. The driving range extension for an electric vehicle was also estimated based on the HVAC energy saving.
Technical Paper

Dynamic EGR Estimation for Production Engine Control

2001-03-05
2001-01-0553
A dynamic EGR State Estimator (ESE) intended for production engine management systems (EMS) implementation is presented. It better describes the development of external exhaust gas recirculation (EGR) concentration at the engine intake ports during EGR transients than traditional models. The dynamics of EGR concentration time and spatial development in the intake manifold are described as a perfect mixing model in the intake manifold plenum volume and non-mixing plug flow in the intake manifold runners. The time scale of EGR transients precludes the use of traditional EGR measurement techniques for model verification. Instead a wide range air fuel (WRAF) sensor is used. Results are shown for a large variation in operating conditions and compared to the performance of a traditional model.
X