Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

Fuel Rail Pressure Rise during Cold Start of a Gasoline Direct Injection Engine

2012-04-16
2012-01-0393
Gasoline direct injection provides reduced engine emissions, increased power, and increased fuel economy as compared to port fuel injection (PFI). Reduced emissions are largely due to starting the engine using high fuel pressure (up to 150 bar) and injecting into the compression stroke. During a cold start, fuel pressure must be increased from lift pump pressure (typically 4 to 6 bar) to desired injection pressure (typically 25 bar minimum). Start times are therefore impacted by the high pressure pump's ability to quickly build fuel pressure during crank. This study investigates the temperature and pressure affects during engine soak which allow vapor and air to form in the fuel system. Vapor and/or air in the system cause a slower fuel pressure build and increases start times. The scope of the problem and possible solutions were determined using theoretical and empirical testing.
Technical Paper

Flawless Manufacturing of RACam through XCP Protocol

2016-04-05
2016-01-0047
RACam [1] is an Active Safety product designed and manufactured at Delphi and is part of their ADAS portfolio. It combines two sensors - Electronically Scanned RADAR and Camera in a single package. RADAR and Vision fusion data is used to realize safety critical systems such as Adaptive Cruise Control (ACC), Autonomous Emergency Braking (AEB), Lane Departure Warning (LDW), Lane Keep Assist (LKA), Traffic Sign Recognition (TSR) and Automatic Headlight Control (AHL). Figure 1 RACam Front View. With an increase in Active Safety features in the automotive market there is also a corresponding increase in the complexity of the hardware which supports these safety features. Delphi’s hardware design for Active Safety has evolved over the years. In Delphi’s RACam product there are a number of critical components required in order to realize RADAR and Vision in a single package. RACam is also equipped with a fan and heater to improve the operating temperature range.
Technical Paper

Engine Plant Model Development for HIL System and Application to On-Board Diagnostic Verification

2011-04-12
2011-01-0457
This paper first presents a basic mean value engine plant model implemented in a hardware-in-the-loop (HIL) system. The plant model includes some basic engine parameters such as engine speed, manifold absolute pressure, etc., which are critical to both control algorithm integrity and default actions that result from improper signal performance (e.g., ECU shuts down due to corrupted signal(s)). The model is then improved to develop the HIL bench-based testing capabilities in the areas where a vehicle has traditionally been required. The on-board diagnostic monitor tests covered by SID $06 of SAE J1979 are selected as a case study. Specifically, for OBD exhaust gas sensor monitor testing purposes, the oxygen sensor model is developed to simulate normal or abnormal binary switching signals which might have asymmetric “lean to rich” and “rich to lean” transitions, or largely off maximum/minimum sensor voltages, etc.
Book

Diesel Common Rail and Advanced Fuel Injection Systems

2005-09-12
Despite being developed more than 100 years ago, the diesel engine has yet to achieve mass acceptance in the North American passenger car sector. In most other parts of the world, however, diesel engines have made considerable strides due in part to the common rail fuel injection system. Significant fuel economy, reduced exhaust emissions, invincible low-speed torque, and all-around good drivability are a few of the benefits associated with common rail technology, which are covered in-depth in Diesel Common Rail and Advanced Fuel Injection Systems.
Journal Article

Characterization of Engine Control Authority on HCCI Combustion as the High Load Limit is Approached

2013-04-08
2013-01-1665
In this study the authority of the available engine controls are characterized as the high load limit of homogeneous charge compression ignition (HCCI) combustion is approached. A boosted single-cylinder research engine is used and is equipped with direct injection (DI) fueling, a laboratory air handling system, and a hydraulic valve actuation (HVA) valve train to enable negative valve overlap (NVO) breathing. Results presented include engine loads from 350 to 650 kPa IMEPnet and manifold pressure from 98 to 190 kPaa. It is found that in order to increase engine load to 650 kPa IMEPnet, it is necessary to increase manifold pressure and external EGR while reducing the NVO duration. While both are effective at controlling combustion phasing, NVO duration is found to be a "coarse" control while fuel injection timing is a "fine" control.
Technical Paper

A High-Energy Continuous Discharge Ignition System for Dilute Engine Applications

2013-04-08
2013-01-1628
SwRI has developed the DCO® ignition system, a unique continuous discharge system that allows for variable duration/energy events in SI engines. The system uses two coils connected by a diode and a multi-striking controller to generate a continuous current flow through the spark plug of variable duration. A previous publication demonstrated the ability of the DCO system to improve EGR tolerance using low energy coils. In this publication, the work is extended to high current (≻ 300 mA/high energy (≻ 200 mJ) coils and compared to several advanced ignition systems. The results from a 4-cylinder, MPI application demonstrate that the higher current/higher energy coils offer an improvement over the lower energy coils. The engine was tested at a variety of speed and load conditions operating at stoichiometric air-fuel ratios with gasoline and EGR dilution.
X