Refine Your Search

Topic

Search Results

Viewing 1 to 18 of 18
Technical Paper

“Clear Vision” Automatic Windshield Defogging System

2004-03-08
2004-01-1373
The present paper describes the system design for the Clear Vision auto defog system and the improvements made to the Integrated Dew Point and Glass Temperature (IDGT) sensor. The Clear Vision auto defog system has been implemented on a 2000 Cadillac DeVille. Preliminary validation tests demonstrate satisfactory performance.
Technical Paper

Unified Control of Brake- and Steer-by-Wire Systems Using Optimal Control Allocation Methods

2006-04-03
2006-01-0924
A new optimal control strategy for dealing with braking actuator failures in a vehicle equipped with a brake-by-wire and steer-by- wire system is described. The main objective of the control algorithm during the failure mode is to redistribute the control tasks to the functioning actuators, so that the vehicle performance remains as close as possible to the desired performance in spite of a failure. The desired motion of the vehicle in the yaw plane is determined using driver steering and braking inputs along with vehicle speed. For the purpose of synthesizing the control algorithm, a non-linear vehicle model is developed, which describes the vehicle dynamics in the yaw plane in both linear and non-linear ranges of handling. A control allocation algorithm determines the control inputs that minimize the difference between the desired and actual vehicle motions, while satisfying all actuator constraints.
Technical Paper

The Potential of Switched Reluctance Motor Technology for Electro-Mechanical Brake Applications

2006-04-03
2006-01-0296
Electro-mechanical brakes (EMBs) are emerging as a new approach to enhance brake system features as well as braking performance. This paper takes a fresh look at the switched reluctance (SR) drive as a possible prime mover technology for EMB applications. The switched reluctance motor has attractive potential, in view of its robustness, dynamic bandwidth and fault tolerance. An overall assessment of the approach is made based on bench performance of a prototype EMB caliper with an SR drive executing typical braking patterns. It is shown that the SR motor can provide the required overall brake actuator performance. Various implementation options are examined to lower cost, with particular focus on electronic design, control algorithms and motor position sensing.
Technical Paper

The Development of a RTD Temperature Sensor for Exhaust Applications

2004-03-08
2004-01-1421
A RTD (resistive temperature device) high temperature sensor was developed for exhaust gas temperature measurement. Extensive modeling and optimization was used to supplement testing in development. The sensor was developed to be capable of withstanding harsh environments (-40° to 1000°C), typical of engine applications, including poisons, while maintaining high accuracy (< 0.5% drift after 500 hrs of aging at 950°C). The following sensor characteristics are presented: resistance-temperature curve, accuracy, response time, and long-term durability. In addition, a system error analysis program was developed with representative results.
Journal Article

Stability and Control Considerations of Vehicle-Trailer Combination

2008-04-14
2008-01-1228
In this paper, dynamics and stability of an articulated vehicle in the yaw plane are examined through analysis, simulations, and vehicle testing. Control of a vehicle-trailer combination using active braking of the towing vehicle is discussed. A linear analytical model describing lateral and yaw motions of a vehicle-trailer combination is used to study the effects of parameter variations of the trailer on the dynamic stability of the system and limitations of different control strategies. The results predicted by the analytical model are confirmed by testing using a vehicle with a trailer in several configurations. Design of the trailer makes it possible to vary several critical parameters of the trailer. The test data for vehicle with trailer in different configurations is used to validate the detailed non-linear simulation model of the vehicle-trailer combination.
Technical Paper

Sensitivity of Contact Electronic Throttle Control Sensor to Control System Variation

2006-04-03
2006-01-0763
The purpose of this paper is to improve the understanding of the advantages of a non-contact electronic throttle control (ETC) air control valve position sensor over the potentiometer technology of contacting position sensors. The non-contact position sensing offers the industry an opportunity to take advantage of an improved ability to assess reliability of the product and utilize accelerated testing techniques with improved robustness to control system perturbations. Specifically; eliminating the contact wear failure mechanism reduces the complexity, and duration of ETC air control valve life testing and increases the robustness of the ETC system to noise factors from the control system variation.
Technical Paper

Non-Intrusive Engine Speed Sensor

2007-04-16
2007-01-0960
In the field of vehicle diagnostics accurate instantaneous engine speed information enables the detection and diagnosis of many engine problems, even subtle ones. Currently, there is a limited choice in the ways of obtaining such information. For example, it is known that one can tap into the crank sensor wiring, or use a separate, intrusive method, such as mounting a sensor in the bell housing to sense the rotation of the ring gear. However, the shortcomings of these approaches are locating and gaining access to the crank sensor connector, the location of which varies from vehicle to vehicle. Thus, authors proposed a novel, robust and manufacturing friendly speed sensor. The concept is based on the Villari effect. The sensor, which is attached to the front end of the engine crankshaft, consists of a coil of magnetostrictive wire supplied with AC current. During engine rotation the magnetostrictive wire become stressed due to centrifugal force.
Technical Paper

Influence of Chassis Characteristics on Sustained Roll, Heave and Yaw Oscillations in Dynamic Rollover Testing

2005-04-11
2005-01-0398
In dynamic rollover tests many vehicles experience sustained body roll oscillations during a portion of road edge recovery maneuver, in which constant steering angle is maintained. In this paper, qualitative explanation of this phenomenon is given and it is analyzed using simplified models. It is found that the primary root cause of these oscillations is coupling occurring between the vehicle roll, heave and subsequently yaw modes resulting from suspension jacking forces. These forces cause vertical (heave) motions of vehicle body, which in turn affect tire normal and subsequently lateral forces, influencing yaw response of vehicle. As a result, sustained roll, heave and yaw oscillations occur during essentially a steady-state portion of maneuver. Analysis and simulations are used to assess the influence of several chassis characteristics on the self-excited oscillations. The results provide important insights, which may influence suspension design.
Technical Paper

Hill Hold Moding

2005-04-11
2005-01-0786
A typical problem that is encountered by drivers of vehicles with manual transmissions is rollback on an incline. This occurs when the driver is trying to coordinate the release of the brake pedal with the release of the clutch pedal and application of the accelerator all at the same time. If not done in harmony, the vehicle will roll down the incline. While the Hill Hold function is a highly desirable feature in manual transmission vehicles, it also enhances the driving experience in automatic transmission vehicles equipped with hybrid powertrains. The Hill Hold feature supports the Stop and Go performance associated with a hybrid powertrain by holding the vehicle on an incline and preventing undesired motion. The objective of this paper is to describe the implementation of the Hill Hold feature using an electric and / or a hydraulic brake control system. The paper describes the moding states in implementing the Hill Hold function at various levels of design complexity.
Technical Paper

Hierarchical Component-based Fault Diagnostics for By-Wire Systems

2004-03-08
2004-01-0285
This paper proposes the concept of Generalized Diagnostic Component (GDC) and presents a modular fault diagnostic strategy for safety critical automotive systems. The diagnostic strategy makes full use of hierarchical techniques, integrates the generalized diagnostic design into all-purpose vehicle diagnoses based on reconfiguration of the GDCs, and inherits the model-based diagnostic algorithms developed for Steering/Braking-By-Wire systems. The GDC-based approach simplifies the design and integration of diagnostics in complex dynamical control systems, and has been successfully implemented in an eight degrees of freedom NAVDyn (Non-Linear Analysis of Vehicle Dynamics) simulation model using Matlab Simulink. The simulation results are provided in this paper to testify that the diagnostic strategy and implementation are feasible, efficient and dependable.
Technical Paper

Exploring the Trade-Off of Handling Stability and Responsiveness with Advanced Control Systems

2007-04-16
2007-01-0812
Advanced chassis control systems enable a vehicle to achieve new levels of performance in handling stability and responsiveness. In recent work by NHTSA and others, the performance of Electronic Stability Control (ESC) systems has been studied with focus on yaw stability and roll stability of vehicles on high friction surfaces. However, it is recognized that vehicle handling responsiveness is also an important aspect that should be maintained. This paper explores the trade-offs between yaw rate, side slip, and roll motions of a vehicle, and their relationships to handling stability and handling responsiveness. This paper further describes how various control systems are able to manage these motions. The paper also discusses methods to assess vehicle stability and responsiveness using specific maneuvers and measurements, and it includes data from vehicle tests on a slippery surface.
Technical Paper

Effects of Brake Actuator Error on Vehicle Dynamics and Stability

2005-04-11
2005-01-1578
In this paper the effects of rear brake imprecision on vehicle braking performance and yaw dynamics are investigated for a vehicle with individually controlled brake actuators. The effects of side to side brake force imbalance on vehicle yaw rate and path deviation during straight line braking and in braking in turn maneuvers are examined through analysis, simulations and vehicle testing. These effects are compared to the influences of disturbances encountered during normal driving such as side winds and bank angles of the road. The loss of brake efficiency due to imprecision in generating actuating force is evaluated for different types of vehicles and different levels of vehicle deceleration. Requirements regarding path deviation during straight line braking and braking efficiency on low friction surfaces were found to lead to the most stringent specifications for actuator accuracy in realizing the desired braking forces.
Journal Article

Diagnostics based on the Statistical Correlation of Sensors

2008-04-14
2008-01-0129
The paper describes a new strategy for real-time sensor diagnostics that is based on the statistical correlation of various sensor signal pairs. During normal fault-free operation there is a certain correlation between the sensor signals which is lost in the event of a fault. The proposed algorithm quantifies the correlation between sensor signal pairs using real-time scalar metrics based on the Mahalanobis-distance concept. During normal operation all metrics follow a similar pattern, however in the event of a fault; metrics involving the faulty sensor would increase in proportion to the magnitude of the fault. Thus, by monitoring this pattern and using a suitable fault-signature table it is possible to isolate the faulty sensor in real-time. Preliminary simulation results suggest that the strategy can mitigate the false-alarms experienced by most model-based diagnostic algorithms due to an intrinsic ability to distinguish nonlinear vehicle behavior from actual sensor faults.
Technical Paper

Control of Brake- and Steer-by-Wire Systems During Brake Actuator Failure

2006-04-03
2006-01-0923
In this paper a method of mitigating the consequences of potential brake actuator failure in vehicles with brake-by-wire (BBW) and possibly with steer-by-wire (SBW) systems is described. The proposed control algorithm is based on rules derived from general principles of vehicle dynamics. When a failure of one actuator is detected, the algorithm redistributes the braking forces among the remaining actuators in such a way that the desired deceleration of vehicle is followed as closely as possible, while the magnitude and the rate of change of the yaw moment caused by asymmetric braking are properly managed. When vehicle is equipped with BBW system only, or when the desired deceleration can be obtained by redistributing of braking forces, without generating an undesired yaw moment, no steering correction is used. Otherwise, a combination of brake force redistribution and steering correction (to counter the yaw moment generated by non-symmetric braking) is applied.
Technical Paper

Comparison of Load Distributions between Human Occupants and ATDs in Normal and Non-normal Occupant Positions and Postures

2006-04-03
2006-01-1435
In occupant sensing system development, the Anthropomorphic Test Dummy (ATD) and the Occupant Classification ATD (OCATD) are frequently used to simulate live human subjects in the testing and validation of weight based occupant sensing systems. A study was conducted to investigate the range of loading differences between these ATDs and live human subjects over various seating postures and conditions. The results of the study revealed that differences in seat load patterns could be significant, even though both the ATD and live humans are in the same weight and body size categories. Seat loading was measured using Hybrid III (5th percentile female, 50th percentile male, and 3 year old) ATDs, OCATDs (OCATD5 - 5th percentile female, and OCATD6 - 6 yr old child), and a CRABI (12-month old) dummy. Human subjects in the same weight and height categories as the above listed ATDs were also measured.
Technical Paper

A Vehicle-to-Vehicle Communication Database for Infrastructureless Routing

2008-04-14
2008-01-1254
Traffic engineers use time-of-day travel time databases to characterize normal travel times on roads. This information is used by traffic management centers together with information from sensors in the highway to identify problems and to make alternate route recommendations. In this paper, the travel time database concept is extended to a vehicle-to-vehicle communications network for traffic and safety information, wherein the travel time database is generated and stored by vehicles in the network, and used by the vehicles to identify abnormal traffic conditions. This infrastructure-free approach is attractive due to the potential to eliminate highway sensor and sensor maintenance costs, which are major factors that limit the growth of traffic information beyond major roadways in urban regions. Initial work indicates that database storage requirements in the vehicle should be manageable.
Technical Paper

A Strategy to Partition Crash Data to Define Active-Safety Sensors and Product Solutions

2008-10-20
2008-21-0032
Both Crash-Avoidance and Pre-Crash active safety technologies are being developed to help reduce the number of crashes and minimize the severity of crashes. The root basis in the development of new and improved active safety technologies always begins with gaining further knowledge about crash kinds and causes. The dynamics of crashes are quite complex. The evolving precursor crash situation initiated in the Crash-Avoidance time-period will vary from the imminent crash situation in the Pre-Crash time-period. As such, in order to develop the appropriate requirements for both crash-avoidance and pre-crash technologies, they must be analyzed from their respective crash data. A data-driven methodology process has been developed which partitions the field data with a perspective to crash-avoidance and pre-crash.
Technical Paper

A Statistical Approach for Real-Time Prognosis of Safety-Critical Vehicle Systems

2007-04-16
2007-01-1497
The paper describes the development of a vehicle stability indicator based on the correlation between various current vehicle chassis sensors such as hand wheel angle, yaw rate and lateral acceleration. In general, there is a correlation between various pairs of sensor signals when the vehicle operation is linear and stable and a lack of correlation when the vehicle is becoming unstable or operating in a nonlinear region. The paper outlines one potential embodiment of the technology that makes use of the Mahalanobis distance metric to assess the degree of correlation among the sensor signals. With this approach a single scalar metric provides an accurate indication of vehicle stability.
X