Refine Your Search

Topic

Author

Search Results

Journal Article

Verification of ASSTREET Driver-Agent Model by Collaborating with the Driving Simulator

2012-04-16
2012-01-1161
This paper proposes a novel method of verifying comprehensive driver model used for the evaluation of driving safety systems, which is achieved by coupling the traffic simulation and the driving simulator (DS). The method consists of three-step procedure. In the first step, an actual driver operates a DS vehicle in the traffic flow controlled by the traffic simulation. Then in the next step, the actual driver is replaced by a driver model and the surrounding vehicle maneuvers are replayed using the recorded data from the first step. Then, the maneuver by the driver model is compared directly with the actual driver's maneuver along the simulation time steps.
Technical Paper

Update of the WorldSID 50th Male Pelvic Injury Criterion and Risk Curve

2018-04-03
2018-01-0539
Petit et al. 2015 and Lebarbé et al. 2016 reported on two studies where the injury mechanism and threshold of the sacroiliac joint were investigated in two slightly oblique crash test conditions from 18 Post Mortem Human Subjects (PMHS) tests. They concluded that the sacroiliac joint fractures were associated with pubic rami fractures. These latter being reported to occur first in the time history. Therefore it was recommended not to define a criterion specific for the sacroiliac joint. In 2012, injury risk curves were published for the WorldSID dummy by Petitjean et al. For the pelvis, dummy and PMHS paired tests from six configurations were used (n = 55). All of these configurations were pure lateral impacts. In addition, the sacroiliac joint and femur neck loads were not recorded, and the dummy used was the first production version (WorldSID revision 1). Since that time, the WorldSID was updated several times, including changes in the pelvis area.
Technical Paper

Toyota's New Shift-by-Wire System for Hybrid Vehicles

2004-03-08
2004-01-1112
In today's motorized society, various automotive technologies continue to evolve every day. Amid this trend, a new concept with respect to automatic transaxle gear-shifting has been developed. In order to materialize a new concept for shifting operation with a universal design in mind, a system has been developed: a shift-by-wire system developed specifically for hybrid vehicles. The greatest advantage of this new system is the lack of constraints associated with the conventional mechanical linkage to the transaxle. This allows freedom of design for the gear selection module. A revolutionary improvement in the ease of shifting has been realized by taking full advantage of this design freedom. In addition, this system contributes to an innovative design. For improved ease of operation, the operation force of the shift lever of this system has been dramatically reduced. For parking, the driver can engage the parking mechanism of the transaxle at the touch of a switch.
Journal Article

Toyota's Integrated Drive Power Control System for Downsized Turbocharged Engine

2015-04-14
2015-01-1636
New engine controls have been developed for the turbocharged Lexus NX200t to improve driving power by reducing engine torque output lag. Drive power management functions have been centralized in an integrated drive power control system. The newly developed controls minimize the potential reduction in drivability associated with the adoption of a turbocharged engine while improving fuel efficiency. General driveability issues commonly associated with a turbocharged engine include sudden increases in drive power due to the response lag of the turbocharger, and higher shifting frequencies if this response lag triggers a disturbed accelerator operation pattern by the driver. The developed technologies detect and control sudden increases in drive power to create the optimum drive power map, and reduce unnecessary shifts even if the driver's accelerator operation is disturbed.
Technical Paper

Study of Vehicle-to-Vehicle Collision Performance Based on Balance of Front End Strength

2007-04-16
2007-01-1175
Compatibility in vehicles crashes has been studied worldwide in recent years. In cases where primary energy-absorbing structures such as front end members were bypassed in front-to-front collisions, energy-absorbing efficiency declined compared to cases when no such bypassing occurred. A bumper beam that connects the front end members in the transverse direction can help prevent bypassing of primary energy-absorbing structures. The strength balance between front end members and a bumper beam was studied in this paper. It was verified in front-to-front offset vehicle collision tests that crash energy can be efficiently absorbed by balancing the strength of the bumper beam with the compression strength of the front end members.
Technical Paper

Study of Braking Characteristics of New Manual Braking System (1st Report)

2024-04-09
2024-01-2497
The purpose of this study is to propose braking characteristics that are easy for drivers to handle in a system in which braking and driving operations are performed by hand. Genetic algorithm optimization of braking characteristics showed that the best deceleration tracking was achieved by an FG diagram with a logarithmic function shape. In contrast, the slope of the optimal FG diagram tended to decrease as the driver's proportional gain increased.
Technical Paper

Spatio-Temporal Frequency Characteristics Measurement of Contrast Sensitivity for Smart Lighting

2016-04-05
2016-01-1420
This study aims at the development of a projection pattern that is capable of shortening the time required by a driver to perceive a pedestrian at night when a vehicle’s high beams are utilized. Our approach is based on the spatio-temporal frequency characteristics of human vision. Visual contrast sensitivity is dependent on spatiotemporal frequency, and maximum contrast sensitivity frequency varies depending on environmental luminance. Conventionally, there are several applications that utilize the spatio-temporal frequency characteristics of human vision. For example, the National Television System Committee (NTSC) television format takes into consideration low-sensitivity visual characteristics. In contrast, our approach utilizes high-sensitivity visual characteristics based on the assumption that the higher contrast sensitivity of spatio-temporal frequencies will correlate more effectively with shorter perception times.
Journal Article

Smart Lighting for Enhancing Perception of Pedestrians based on Visual Properties

2016-04-05
2016-01-1414
We investigated a lighting method that supports pedestrian perception by vehicle drivers. This lighting method makes active use of visual characteristics such as the spatio-temporal frequency of contrast sensitivity. Using reasonable parameter values derived from preliminary experiments using a Campbell-Robson chart, we determined a suitable lighting pattern that improves the driver's pedestrian perception. In order to assess the influence of visual characteristics on a reaction-time-dependent task, such as pedestrian perception in nighttime, tests were performed in the target environment, the results of which validated the proposed method.
Technical Paper

Research of Occupant kinematics and Injury values of Hybrid III, THOR, and human FE model in Oblique Frontal Impact

2016-04-05
2016-01-1521
This paper describes impact kinematics and injury values of Hybrid III AM50, THOR AM50 and THUMS AM50 in simulated oblique frontal impact conditions. A comparison was made among them in driver and passenger seat positions of a midsize sedan car finite element (FE) model. The simulation results indicated that the impact kinematics of THOR was close to that of THUMS compared to that of the Hybrid III. Both THOR and THUMS showed z-axis rotation of the rib cage, while Hybrid III did not. It was considered that the rib cage rotation was due primarily to the oblique impact but was allowed by flexibility of the lumbar spine in THOR and THUMS. Lateral head displacement observed in both THOR and THUMS was mostly induced by that rotation in both driver seat and passenger seat positions. The BrIC, thorax and abdominal injury values were close to each other between THOR and THUMS, while HIC15 and Acetabulum force values were different.
Technical Paper

Reference PMHS Sled Tests to Assess Submarining of the Small Female

2018-11-12
2018-22-0003
In the last decade, extensive efforts have been made to understand the physics of submarining and its consequences in terms of abdominal injuries. For that purpose, 27 Post Mortem Human Subject (PMHS) tests were performed in well controlled conditions on a sled and response corridors were provided to assess the biofidelity of dummies or human body models. All these efforts were based on the 50th percentile male. In parallel, efforts were initiated to transfer the understanding of submarining and the prediction criteria to the THOR dummies. Both the biofidelity targets and the criteria were scaled down from the 50th percentile male to the 5th percentile THOR female. The objective of this project was to run a set of reference PMHS tests in order to check the biofidelity of the THOR F05 in terms of submarining. Three series of tests were performed on nine PMHS, the first one was designed to avoid submarining, the second and third ones were designed to result in submarining.
Technical Paper

Reference PMHS Sled Tests to Assess Submarining

2015-11-09
2015-22-0008
Sled tests focused on pelvis behavior and submarining can be found in the literature. However, they were performed either with rigid seats or with commercial seats. The objective of this study was to get reference tests to assess the submarining ability of dummies in more realistic conditions than on rigid seat, but still in a repeatable and reproducible setup. For this purpose, a semi-rigid seat was developed, which mimics the behavior of real seats, although it is made of rigid plates and springs that are easy to reproduce and simulate with an FE model. In total, eight PMHS sled tests were performed on this semi-rigid seat to get data in two different configurations: first in a front seat configuration that was designed to prevent submarining, then in a rear seat configuration with adjusted spring stiffness to generate submarining. All subjects sustained extensive rib fractures from the shoulder belt loading.
Technical Paper

Pre-Collision System for Toyota Safety Sense

2016-04-05
2016-01-1458
Toyota Safety Sense is a safety system package developed to help drivers avoid accident types with a high frequency of occurrence. This paper deals with pre-collision system which forms the core of Toyota Safety Sense, especially Toyota Safety Sense P which uses a combined sensor configuration consisting of a monocular camera paired with millimeter wave radar, in order to achieve both high recognition performance and reliability. The use of a wide-angle monocular camera, millimeter wave radar integrated in the front grill emblem, and a collision determination algorithm for pedestrian targets enabled the development of a pre-collision system comprising detection capability of crossing pedestrians. Toyota has developed warning and pre-collision brake assist for driver to assist in avoiding a collision effectively; In addition, Pre-collision brake has achieved high level of performance for the drivers who cannot avoid a collision.
Technical Paper

Optical Sensor Concepts for Future Head-Lighting System

2007-04-16
2007-01-0611
To enhance drivers' convenience and safety, headlamps and headlamp control systems have been remarkably improved. For example, in daytime driving condition, auto-lighting systems support drivers especially when they repeat entering and exiting tunnels in mountain areas. On the other hand, in nighttime driving conditions, the higher luminance headlamp HID gives drivers the enhanced visibility and Adaptive Front-lighting System (AFS) offers them the increased forward visibility on curves. Nevertheless, their performances are not yet enough developed to meet the market demands. In case of entering tunnels, the lighting-up timing is sometimes later than desired. In case of HID and AFS, their potentials are sometimes unnecessarily restrained to prevent glare to oncoming vehicles even they don't exist. These problems should be solved by adding the scene sensor to those systems.
Technical Paper

Occupant Kinematics and Estimated Effectiveness of Side Airbags in Pole Side Impacts Using a Human FE Model with Internal Organs

2008-11-03
2008-22-0015
When a car collides against a pole-like obstacle, the deformation pattern of the vehicle body-side tends to extend to its upper region. A possible consequence is an increase of loading to the occupant thorax. Many studies have been conducted to understand human thoracic responses to lateral loading, and injury criteria have been developed based on the results. However, injury mechanisms, especially those of internal organs, are not well understood. A human body FE model was used in this study to simulate occupant kinematics in a pole side impact. Internal organ parts were introduced into the torso model, including their geometric features, material properties and connections with other tissues. The mechanical responses of the model were validated against PMHS data in the literature. Although injury criterion for each organ has not been established, pressure level and its changes can be estimated from the organ models.
Technical Paper

New Drivetrain for Toyota's Flagship Lexus LFA Sports Car

2011-04-12
2011-01-1427
Toyota Motor Corporation has developed a new drivetrain for their flagship Lexus LFA sports car. Passionate driving experience was pursued at the forefront of development. Superior vehicle performance, handling, and responsiveness that seem to anticipate the driver's intentions are achieved. Special vehicle packaging and component placement are adopted in the LFA in order to realize such performance. The engine, clutch, and front counter gear are positioned at the front of the vehicle, and the transaxle at the rear. The engine and transaxle are connected by a rigid torque tube. The transaxle is an automated manual transmission equipped with an electrohydraulic actuator for controlling both the shift and clutch operations. This actuator enables accurate control of the transmission and extremely quick response to shift paddle operation by the driver. This paper describes a general outline of the drivetrain and each component that has significantly contributed to LFA product appeal.
Technical Paper

Method of Improving Side Impact Protection Performance by Induction Hardening of Body Reinforcement Compatibility Between Safety and Weight Reduction in Body Engineering

1998-02-23
980550
A technique for induction-hardening local portions of vehicle body reinforcements press-formed of thin sheet steel has been developed, with the aim of ensuring occupant safety in a side collision. This technique for increasing the tensile strength of sheet steel was practically applied to the front floor cross member and center pillar reinforcement. Owing to this method, the weight of body reinforcements can be decreased. New induction-hardening systems have also been developed for the present technique. One is an apparatus which allows induction-hardening a part with a three-dimensionally curved surface. Another is a straightening quench technique used to retain the same dimensional accuracy as the original press-formed part.
Technical Paper

Investigation of Pelvic Injuries on Eighteen Post Mortem Human Subjects Submitted to Oblique Lateral Impacts

2016-11-07
2016-22-0005
The aim of this study was to investigate the sacroiliac joint injury mechanism. Two test configurations were selected from full scale car crashes conducted with the WorldSID 50th dummy resulting in high sacroiliac joint loads and low pubic symphysis force, i.e. severe conditions for the sacroiliac joint. The two test conditions were reproduced in laboratory using a 150-155 kg guided probe propelled respectively at 8 m/s and 7.5 m/s and with different shapes and orientations for the plate impacting the pelvis. Nine Post Mortem Human Subject (PMHS) were tested in each of the two configurations (eighteen PMHS in total). In order to get information on the time of fracture, eleven strain gauges were glued on the pelvic bone of each PMHS. Results - In the first configuration, five PMHS out of nine sustained AIS2+ pelvic injuries. All five presented sacroiliac joint injuries associated with pubic area injuries.
Technical Paper

Injury Estimation in Frontal Collisions for Automobiles Equipped with Event Data Recorders (EDRs)

2015-04-14
2015-01-1447
Event Data Recorders (EDRs) record valuable data in estimating the occupant injury severity after a crash. Advanced Automatic Collision Notification (AACN) with the use of EDR data will determine the potential extent of injuries to those involved in motor vehicle accidents. In order to obtain basic information in injury estimation using EDR data, frontal collisions for 29 vehicles equipped with EDRs were analyzed as a pilot study by retrieving the EDR data from the accident vehicles and collecting the occupant injury data from the database of an insurance company. As a result, the severity of occupant injury was closely related to the Delta V recorded on an EDR. However, there were several cases in which the predicted injury level was overestimated or underestimated by the Delta V. Therefore, caution is required when predicting the level of injury in frontal collisions based upon the Delta V alone.
Technical Paper

Indoor Pass-by Noise Evaluation System Capable of Reproducing ISO Actual Road Surface Tire Noise

2016-04-05
2016-01-0479
Generally, pass-by noise levels measured outdoors vary according to the influence of weather conditions, background noise and the driver’s skill. Manufactures, therefore, are trying to reproduce proving ground driving conditions on a chassis dynamometer. The tire noise that occurs on actual road surfaces, however, is difficult to reproduce in indoor tests. In 2016, new pass-by noise regulations (UN R51-03) will take effect in Europe, Japan and other countries. Furthermore, stricter regulations (2dB) will take effect in 2020. In addition to the acceleration runs required under current regulations, UN R51-03 will require constant speed runs. Therefore, an efficient measurement methods are necessary for vehicle development. To solve the above mentioned issues, an indoor evaluation system capable of reproducing the tire noise that occurs on road surfaces has been developed.
Journal Article

Improvement of Ride Comfort by Unsprung Negative Skyhook Damper Control Using In-Wheel Motors

2016-04-05
2016-01-1678
Vehicles equipped with in-wheel motors (IWMs) are capable of independent control of the driving force at each wheel. These vehicles can also control the motion of the sprung mass by driving force distribution using the suspension reaction force generated by IWM drive. However, one disadvantage of IWMs is an increase in unsprung mass. This has the effect of increasing vibrations in the 4 to 8 Hz range, which is reported to be uncomfortable to vehicle occupants, thereby reducing ride comfort. This research aimed to improve ride comfort through driving force control. Skyhook damper control is a typical ride comfort control method. Although this control is generally capable of reducing vibration around the resonance frequency of the sprung mass, it also has the trade-off effect of worsening vibration in the targeted mid-frequency 4 to 8 Hz range. This research aimed to improve mid-frequency vibration by identifying the cause of this adverse effect through the equations of motion.
X