Refine Your Search

Topic

Author

Search Results

Technical Paper

Visualization of Micro Structure in a Diesel Spray by Use of Photography with High Spatial Resolution

2008-10-06
2008-01-2465
It is very much necessary for researchers and engineers whose work is the field of combustion in a CI engine to find the information of droplets in a diesel spray. The information is strongly required to construct the model of spray built in the numerical code for its simulation and to be used for the verification of the accuracy of the calculation. This paper describes the photographing system with high spatial resolution, the distribution of droplet size and the vortex scale caused by the droplets motion by means of this system.
Technical Paper

Visualization of Cavitation Inside Nozzle Hole and Injected Liquid Jet

2015-09-01
2015-01-1908
The atomization structure of the fuel spray is known to be affected by flow conditions and cavitation inside the nozzle hole. In this paper, the cavitation phenomena inside the nozzle hole was visualized by using large-scale transparent nozzles, as well as the effect of length-to-width ratio (l/w ratio) of the nozzle hole on cavitation and on the behavior of injection liquid jet. In addition, various flow patterns inside the nozzle hole same as experimental conditions were simulated by the use of Cavitation model incorporated in Star-CCM+, which was compared with experimental results.
Technical Paper

Vaporization Characteristics and Liquid-Phase Penetration for Multi-Component Fuels

2004-03-08
2004-01-0529
The maximum liquid-phase penetration and vaporization behavior was investigated by using simultaneous measurement for mie-scattered light images and shadowgraph ones. The objective of this study was to analyze effect of variant parameters (injection pressure, ambient gas condition and fuel temperature) and fuel properties on vaporization behavior, and to investigate liquid phase penetration for the single- and multi-component fuels. The experiments were conducted in a constant-volume vessel with optical access. Fuel was injected into the vessel with electronically controlled common rail injector.
Technical Paper

The Experimental Investigation of the Performance and Emissions Characteristics of Direct Injection Diesel Engine by Bio-Hydro Fined Diesel Oil and Diesel Oil in Different EGR

2020-01-24
2019-32-0595
Bio-hydro fined diesel (BHD) oil is known as a second generation oil made from bio hydro finning process. Biodiesel in the first generation is made from transesterification process and it has several disadvantages such as high density and increased the viscosity that can cause operational problems because can make some deposits in the engine. To overcome this, the second generation process of biodiesel has been modified from the first generation oil. BHD is made from the waste cooking oil by using the hydro finning process without the trans-esterification process. The results of BHD oil has nearly the same with diesel oil. BHD oil has low viscosity and high oxidation stability. Therefore, BHD oil can be used in the diesel engine without making any modifications in the engine. In this study, the comparison of performance and emissions characteristics from BHD oil, waste cooking oil, and diesel oil are investigated.
Technical Paper

Study on Multicomponent Fuel Spray with High Injection Pressure

2019-12-19
2019-01-2282
In previous study, the model for flash-boiling spray of multicomponent fuel was constructed and was implemented into KIVA code. This model considered the detailed physical properties and evaporation process of multicomponent fuel and the bubble nucleation, growth and disruption in a nozzle orifice and injected fuel droplets. These numerical results using this model were compared with experimental data which were obtained in the previous study using a constant volume vessel. The spray characteristics from numerical simulation qualitatively showed good agreement with the experimental results. Especially, it was confirmed from both the numerical and experimental data that flash-boiling effectively accelerated the atomization and vaporization of fuel droplets. However, in this previous study, injection pressure was very low (up to 15 MPa), and the spray characteristics of high pressure injection could not be analyzed.
Technical Paper

Study on Characteristics of Auto-Ignition and Combustion of Unsteady Synthetic Gas Jet

2007-04-16
2007-01-0629
It is thought that the synthetic gas, including hydrogen and carbon monoxide, has a potential to be an alternative fuel for internal combustion engines, because a heating value of the synthetic gas is higher than one of hydrogen or natural gas. A purpose of this study is to acquire stable auto-ignition and combustion of the synthetic gas which is supposed to be applied into a direct-injection compression ignition engine. In this study, the effects of ambient gas temperatures and oxygen concentrations on auto-ignition characteristics of the synthetic gas with changing percentage of hydrogen (H2) or carbon monoxide (CO) concentrations in the synthetic gas. An electronically-controlled, hydraulically-actuated gas injector was used to control a precise injection timing and period of gaseous fuels, and the experiments were conducted in an optically accessible, constant-volume combustion chamber under simulated quiescent diesel engine conditions.
Journal Article

Simultaneous Reduction of Pressure Rise Rate and Emissions in a Compression Ignition Engine by Use of Dual-Component Fuel Spray

2012-10-23
2012-32-0031
Ignition, combustion and emissions characteristics of dual-component fuel spray were examined for ranges of injection timing and intake-air oxygen concentration. Fuels used were binary mixtures of gasoline-like component i-octane (cetane number 12, boiling point 372 K) and diesel fuel-like component n-tridecane (cetane number 88, boiling point 510 K). Mass fraction of i-octane was also changed as the experimental variable. The experimental study was carried out in a single cylinder compression ignition engine equipped with a common-rail injection system and an exhaust gas recirculation system. The results demonstrated that the increase of the i-octane mass fraction with optimizations of injection timing and intake oxygen concentration reduced pressure rise rate and soot and NOx emissions without deterioration of indicated thermal efficiency.
Technical Paper

Simultaneous Measurement of Fuel Droplet Deposition Amount and Oil Film Thickness on Spray Impingement Using Double Laser Induced Fluorescence Method

2017-10-08
2017-01-2371
Diesel Particulate filter (DPF) is installed as after treatment device of exhaust gas in diesel engine, and collects the Particulate Matter (PM). However, as the operation time of engine increases, PM is accumulated in the DPF, resulting in deterioration of PM collection efficiency and increasing in pressure loss. Therefore, Post injection has been attracted attention as DPF regeneration method for burning and removing PM in DPF. However, Post injection causes oil dilution when fuel is injected at the middle to late stage of expansion stroke. Oil dilution are concerned to deteriorate the sliding property of piston and the thermal efficiency. For this reason, it is necessary to elucidate the mechanism and the behavior that spray impinges lubricating oil film. Therefore, in this study, we aimed to construct model of Computational Fluid Dynamics (CFD) that predicts amount of oil dilution which is concern for post injection in diesel engine, with high accuracy.
Technical Paper

Similarity Law of Entrainment into Diesel Spray and Steady Spray

1990-02-01
900447
The surroundings around the diesel spray are entrained during the growth of the spray. The mixing process between the evaporated fuel oil and the entrained surroundings, that is, the entrainment, has a significant meaning for the combustion diesel engine. It is difficult to detect the movement of the entrainment because the diesel spray is the gas-liquid two-phase flow and the unsteady phenomenon within a few milliseconds. Then, in order to clarify and to generalize the movement of entrainment, following three experiments were done. 1)Two-dimensional steady water spray -flat spray- injected into the ambient atmosphere, using tuft and hot wire method. 2) Unsteady water jet injected into water, using tracer. 3)single diesel spray injected into the atmosphere with high pressure at room temperature, using smoke wire.
Technical Paper

Rolling Tire Vibration Caused by Road Roughness

2005-05-16
2005-01-2524
To reduce tire/road noise, it is important to examine the noise generation mechanism. Noise generated by a rolling tire is mainly emitted from the tread block. However, it has recently been reported that smooth tires also generate noise recently. This paper remarks on a smooth tire vibration by rolling on the road. The vibration of a rolling smooth tire is mainly vibration excited from the road surface. It is difficult to measure the input from the road surface, so we measured the tire's vibration at the leading and trailing edges. Scan Laser Doppler Vibrometers were employed to measure the vibration of the tire tread.
Technical Paper

Reduction of Heavy Duty Diesel Engine Emission and Fuel Economy with Multi-Objective Genetic Algorithm and Phenomenological Model

2004-03-08
2004-01-0531
In this study, a system to perform a parameter search of heavy-duty diesel engines is proposed. Recently, it has become essential to use design methodologies including computer simulations for diesel engines that have small amounts of NOx and SOOT while maintaining reasonable fuel economy. For this purpose, multi-objective optimization techniques should be used. Multi-objective optimization problems have several types of objectives and they should be minimized or maximized at the same time. There is often a trade-off relationship between objects and derivation of the Pareto optimum solutions that express the relationship between the objects is one of the goals in this case. The proposed system consists of a multi-objective genetic algorithm (MOGA) and phenomenological model. MOGA has strong search capability for Pareto optimum solutions. However, MOGA requires a large number of iterations.
Technical Paper

On-Board Measurement of Engine Performance and Emissions in Diesel Vehicle Operated with Bio-diesel Fuel

2004-03-08
2004-01-0083
This paper describes the results of on-board measurement of engine performance and emissions in diesel vehicle operated with bio-diesel fuels. Here, two waste-cooking oils were investigated. One fuel is a waste-cooking oil methyl esters. This fuel is actually applied to a garbage collection vehicle with DI diesel engine (B100) and the city bus (B20; 80% gas oil is mixed into B100 in volume) as an alternative fuel of gas oil in Kyoto City. Another one is a fuel with ozone treatment by removing impurities from raw waste-cooking oils. Here, in order to improve the fuel properties, kerosene is mixed 70% volume in this fuel. This mixed fuel (i-BDF) is applied into several tracks and buses in Wakayama City. Then, these 3 bio-diesel fuels were applied to the on-board experiments and the results were compared with gas oil operation case.
Technical Paper

New Concept on Lower Exhaust Emission of Diesel Engine

1995-09-01
952062
One of countermeasures for exhaust emissions from a diesel engine, especially, DI diesel engine, is the use of a super high pressure injection system with a small hole diameter. However, the system needs greater driving force than that with normal injection pressure, and its demerit is increase in NOx, although soot is decreasing. Then, authors propose the new concept on the simultaneous reduction of NOx and soot. The concept is that the utilization of flash boiling phenomenon in a diesel engine. The phenomenon can be realized by use of the injection of fuel oil with CO2 gas dissolved. Flash boiling facilitates the distinguished atomization of fuel oil and CO2 gas contributes to realizes the internal EGR during combustion. Fundamental information on the characteristics of a flash boiling spray of n-tridecane with CO2 gas dissolved is described in this paper, as a first step.
Technical Paper

Multi-Objective Optimization of Diesel Engine Emissions and Fuel Economy using Genetic Algorithms and Phenomenological Model

2002-10-21
2002-01-2778
In this paper, the simulation of the multi-objective optimization problem of a diesel engine is performed using the phenomenological model of a diesel engine and the genetic algorithm. The target purpose functions are Specific fuel consumption, NOx, and Soot. The design variable is a shape of injection rate. In this research, we emphasize the following three topics by applying the optimization techniques to an emission problem of a diesel engine. Firstly, the multiple injections control the objectives. Secondly, the multi-objective optimization is very useful in an emission problem. Finally, the phenomenological model has a great advantage for optimization. The developed system is illustrated with the simulation examples.
Technical Paper

Mixture Formation Process Analysis in Spray and Wall Impingement Spray under Evaporating Conditions for Direct injection S.I. engines

2023-09-29
2023-32-0015
In this study, the authors analyze the concentration distribution of an evaporative spray mixture with LIEF (Laser induced exciplex fluorescence) method, which is a type of optical measurement. LIEF method is one of the optical measurements for obtaining the spray concentration distribution for separating vapor/liquid phases based on the fluorescence characteristics. In this paper, a quantitative concentration distribution analysis method for wall impingement spray in heterogeneous temperature field has been proposed. Then, a series of experiments were performed in varying injection pressure and ambient density. As a result, a two-dimensional concentration distribution was obtained for the free spray and wall impingement spray.
Technical Paper

Improvement of Combustion Characteristics and Emissions by Applying CO2 Gas Dissolved Fuel in Diesel Engine

2019-12-19
2019-01-2274
We have proposed the application of EGR gas dissolved fuel which might improve spray atomization through effervescent atomization instead of high injection pressure. In this paper, the purpose is to evaluate the influence of the application of CO2 gas dissolved fuel on the combustion characteristics and emissions inside the single cylinder, direct injection diesel engine. As a result, by use of the fuel, smoke was reduced by about 50 to 70%. The amount of NOx was reduced at IMEP=0.3 MPa, but it was increased at IMEP=0.9 MPa.
Technical Paper

Identification of Sound Source Model Using Inverse-Numerical Acoustic Analysis and Noise Prediction for Engine Enclosure

2015-06-15
2015-01-2250
This paper describes the identification of a sound source model for diesel engines installed on agricultural machines by using Inverse-Numerical Acoustic (INA) analysis, and noise predictions using the sound source model identified by INA. INA is a method of identifying surface vibrations from surrounding sound pressures. This method can be applied to sound sources with complicated shapes like those in engines. Although many studies on INA have been conducted, these past studies have focused on improvements to the identified accuracy and prediction of noise in free sound field or hemi-free sound field. The authors accurately predicted the sound pressure levels of engine enclosures using a sound source model identified by INA and a boundary element method (BEM). However, we had not yet verified the effectiveness of this sound source model against enclosures that had sound absorbing materials and openings.
Technical Paper

Heat Flux between Impinged Diesel Spray and Flat Wall

1991-11-01
912460
In a high-speed DI diesel engine, fuel sprays impinge surely on a wall of a piston cavity. Then the phenomenon of the heat transfer between the impinged spray and the wall appears and it has the strong effect on the combustion processes of the engine. The purpose of this study are to clarify basically the heat transfer characteristics. In the experiments, the fuel was injected into the quiescent inert atmosphere with a high temperature under high pressure field, and an evaporative single diesel spray was impinging upon a flat wall. And, the temperature distribution on the wall surface in a radial direction was detected by the Loex-Constantan thin film thermo-couples. Thus, the heat flux between the impinged spray and the wall surface was calculated from the temperature profile within the wall by Fourier's equation using the finite difference method, under the assumption of the one-dimensional heat conduction.
Technical Paper

Genetic Algorithms Optimization of Diesel Engine Emissions and Fuel Efficiency with Air Swirl, EGR,Injection Timing and Multiple Injections

2003-05-19
2003-01-1853
The present study extends the recently developed HIDECS-GA computer code to optimize diesel engine emissions and fuel economy with the existing techniques, such as exhaust gas recirculation (EGR) and multiple injections. A computational model of diesel engines named HIDECS is incorporated with the genetic algorithm (GA) to solve multi-objective optimization problems related to engine design. The phenomenological model, HIDECS code is used for analyzing the emissions and performance of a diesel engine. An extended Genetic Algorithm called the ‘Neighborhood Cultivation Genetic Algorithm’ (NCGA) is used as an optimizer due to its ability to derive the solutions with high accuracy effectively. In this paper, the HIDECS-NCGA methodology is used to optimize engine emissions and economy, simultaneously. The multiple injection patterns are included, along with the start of injection timing, and EGR rate.
Technical Paper

Fuel Design Concept for Low Emission in Engine Systems 4th Report: Effect of Spray Characteristics of Mixed Fuel on Exhaust Concentrations in Diesel Engine

2003-03-03
2003-01-1038
In this study, the novel fuel design concept has been proposed in order to realize the low emission and combustion control in engine systems. In this fuel design concept, the mixed fuels with a high volatility fuel (gasoline or gaseous fuel components) and a low volatility fuel (gas oil or fuel oil components) are used in order to improve the spray characteristics by flash boiling. In our previous papers on this study, the fundamental characteristics of spray and its combustion of mixed fuel were reported. In this paper, heat release and exhaust emission (smoke, NOx and THC) characteristics of single cylinder diesel engine operated with the mixed fuels were investigated under each load. The exhaust performance of diesel engine could be improved using mixed fuel, because fuel properties and spray characteristics were controlled by changing mixing fraction of the mixed fuel.
X