Refine Your Search

Search Results

Viewing 1 to 10 of 10
Technical Paper

The Effects of Unsteady Flow Conditions on Vehicle in Cabin and External Noise Generation

2015-04-14
2015-01-1555
A vehicle driving on the road experiences unsteady flow conditions which are not generally reproduced in the development environment. This paper investigates the potential importance of this difference to aeroacoustics and hence to occupant perception and proposes a methodology to enable better ranking of designs by taking account of wind noise modulation. Two approaches of reproducing the effects of unsteady wind on aeroacoustics were investigated: an active wind tunnel Turbulence Generation System (TGS) and a quasi-steady approach based on measurements at a series of fixed yaw angles. A number of tools were used to investigate the onset flow and its impacts, including roof-mounted probe, acoustic heads and surface microphones. External noise measurements help to reveal the response of separate exterior noise sources to yaw.
Technical Paper

Support Strut Interference Effects on Passenger and Racing Car Wind Tunnel Models

2006-04-03
2006-01-0565
In order to provide a correct aerodynamic simulation of a vehicle traveling along the ground, models are tested using rotating wheels in a wind tunnel with a moving ground. In the most common of configurations the model is supported by a vertical strut, usually designed as an aerofoil profile to minimize interference, with the wheels supported by lateral arms hinged to mounts outside the span of the moving ground plane. In using this type of configuration it is assumed that the presence of the intruding supports do not markedly affect the aerodynamic behavior of the model but this assumption is not always valid. In order to quantify interference effects from support struts, several models were tested over a stationary ground plane mounted to an under floor balance. Each model was tested with and without mock struts, which do not actually support the model.
Journal Article

Links between Notchback Geometry, Aerodynamic Drag, Flow Asymmetry and Unsteady Wake Structure

2011-04-12
2011-01-0166
The rear end geometry of road vehicles has a significant impact on aerodynamic drag and hence on energy consumption. Notchback (sedan) geometries can produce a particularly complex flow structure which can include substantial flow asymmetry. However, the interrelation between rear end geometry, flow asymmetry and aerodynamic drag has lacked previous published systematic investigation. This work examines notchback flows using a family of 16 parametric idealized models. A range of techniques are employed including surface flow visualization, force measurement, multi-hole probe measurements in the wake, PIV over the backlight and trunk deck and CFD. It is shown that, for the range of notchback geometries investigated here, a simple offset applied to the effective backlight angle can collapse the drag coefficient onto the drag vs backlight angle curve of fastback geometries.
Technical Paper

Investigations of the Rear-End Flow Structures on a Sedan Car

2016-04-05
2016-01-1606
The aerodynamic drag, fuel consumption and hence CO2 emissions, of a road vehicle depend strongly on its flow structures and the pressure drag generated. The rear end flow which is an area of complex three-dimensional flow structures, contributes to the wake development and the overall aerodynamic performance of the vehicle. This paper seeks to provide improved insight into this flow region to better inform future drag reduction strategies. Using experimental and numerical techniques, two vehicle shapes have been studied; a 30% scale model of a Volvo S60 representing a 2003MY vehicle and a full scale 2010MY S60. First the surface topology of the rear end (rear window and trunk deck) of both configurations is analysed, using paint to visualise the skin friction pattern. By means of critical points, the pattern is characterized and changes are identified studying the location and type of the occurring singularities.
Journal Article

Effects of On-Road Turbulence on Vehicle Surface Pressures in the A-Pillar Region

2008-04-14
2008-01-0474
There is increasing concern about potential differences in aerodynamic behavior measured in steady flow wind tunnel conditions and that which occurs for vehicles on the road. As tools become available for better simulation of on road conditions there is a growing practical value in understanding what range of conditions are important to simulate. Surface pressures measured on the sideglass of a European hatchback vehicle in the MIRA full scale wind tunnel are compared with those measured on-road. The on-road data corresponds to relatively calm, low yaw conditions and the time averaged pressure distributions on-road and in the wind tunnel at zero yaw were very similar. Variations in instantaneous aerodynamic yaw angle produces fluctuations in surface pressures but the sensitivity of instantaneous pressures to yaw angle was lower for the on-road measurements compared with steady state wind tunnel tests.
Journal Article

Cross Winds and Transients: Reality, Simulation and Effects

2011-04-12
2011-01-0172
This paper provides a published counterpart to the address of the same title at the 2010 SAE World Congress. A vehicle on the road encounters an unsteady flow due to turbulence in the natural wind, due to the unsteady wakes of other vehicles and as a result of traversing through the stationary wakes of road side obstacles. This last term is of greatest significance. Various works related to the characterization, simulation and effects of on-road turbulence are compared together on the turbulence spectrum to highlight differences and similarities. The different works involve different geometries and different approaches to simulating cross wind transients but together these works provide guidance on the most important aspects of the unsteadiness. On-road transients include a range of length scales spanning several orders of magnitude but the most important scales are in the in the 2-20 vehicle length range.
Journal Article

Bluff Body Drag Reduction with Ventilated Base Cavities

2012-04-16
2012-01-0171
Various techniques to reduce the aerodynamic drag of bluff bodies through the mechanism of base pressure recovery have been investigated. These include, for example, boat-tailing, base cavities and base bleed. In this study an Ahmed body in squareback configuration is modified to include a base cavity of variable depth, which can be ventilated by slots. The investigation is conducted in freestream and in ground proximity. It is shown that, with a plain cavity, the overall body drag is reduced for a wide range of cavity depths, but a distinct minimum drag condition is obtained. On adding ventilation slots a comparable drag reduction is achieved but at a greatly reduced cavity depth. Pressure data in the cavity is used to determine the base drag component and shows that the device drag component is significant. Modifications of the slot geometry to reduce this drag component and the effects of slot distribution are investigated.
Journal Article

Aerodynamic Investigation on the Effect of Varying Through-Hub Flow on a Formula One Front Wheel Assembly

2011-04-12
2011-01-1431
For open wheel race cars the front wheel flow and the interaction of its wake with downstream components is of significant importance. Considerable effort goes into the design of front wing end plates, barge boards and underfloor components in order to manage the front wheel flow. In this study a 50% scale Formula One front wheel assembly has been tested in the Durham University 2m₂ open jet wind tunnel to evaluate the effect of through-hub flow on its cooling drag and flow structures. Varying the amount of through-hub flow gave rise to a negative cooling drag trend whereby increasing the flow through the hub resulted in a decrease in drag. This observation has been explained both qualitatively and quantitatively by inlet spillage drag. Lower than optimum airflows through the brake scoop result in undesirable separation at the inside edge and hence, an increase in drag (reversing the cooling drag trend).
Journal Article

Aerodynamic CFD Based Optimization of Police Car Using Bezier Curves

2017-04-11
2017-01-9450
This paper investigates the optimization of the aerodynamic design of a police car, BMW 5-series which is popular police force across the UK. A Bezier curve fitting approach is proposed as a tool to improve the existing design of the warning light cluster in order to reduce drag. A formal optimization technique based on Computational Fluid Dynamics (CFD) and moving least squares (MLS) is used to determine the control points for the approximated curve to cover the light-bar and streamline the shape of the roof. The results clearly show that improving the aerodynamic design of the roofs will offer an important opportunity for reducing the fuel consumption and emissions for police vehicles. The optimized police car has 30% less drag than the non-optimized counter-part.
Journal Article

Aerodynamic Analysis of Grand Prix Cars Operating in Wake Flows

2017-03-28
2017-01-1546
The effect of the upstream wake of a Formula 1 car on a following vehicle has been investigated using experimental and computational methods. Multiple vehicle studies in conventional length wind tunnels pose challenges in achieving a realistic vehicle separation and the use of a short axial length wake generator provides an advantage here. Aerodynamic downforce and drag were seen to reduce, with greater force reductions experienced at shorter axial spacings. With lateral offsets, downforce recovers at a greater rate than drag, returning to the level for a vehicle in isolation for offsets greater than half a car width. The effect of the wake was investigated in CFD using multiple vehicle simulations and non-uniform inlet boundary conditions to recreate the wake. Results closely matched those for a full two-vehicle simulation provided the inlet condition included unsteady components of the onset wake.
X