Refine Your Search


Search Results

Technical Paper

Wing Assembly System for British Aerospace Airbus for the A320

British Aerospace needed an automated wing riveting system for fastening the A320 wing sections. The E4000 Wing Riveting System was designed and installed at their Airbus factory in Chester, UK and is now in production. It uses a five axis solid yoke with workheads on each end of the yoke. It accurately installs both rivets and lockbolts over the entire wing panel, including offset areas.
Technical Paper

True Offset Fastening

An automated machine has been designed with true offset fastening to join shear-tie/frame assemblies to the fuselage of the Boeing 787 Dreamliner. The machine can access fasteners located close to structural components that are very deep. This is accomplished by offsetting the fastening axis from the axis of the head for true offset fastening. The head can be positioned next to the structural component and the offset fastening tooling ‘reaches’ out to the fastener location (Figure 1). By using a true offset, the fastening machine can access fasteners that would be otherwise inaccessible by traditional automated equipment. The machine can also be lighter and more accurate when compared to fastening machines with traditional tooling.
Technical Paper

Stick Fastener Feed System for Large Variety & Small Quantity

Electroimpact has developed a new Fastener Feed System which provides an automated solution for fasteners previously hand fed via drop tubes. The hardware is simple, compact, and is supplied a fraction of the cost of hoppers or cartridges. It can be used as a primary feed system or it can be used as an auxiliary feed system when combined with feed systems designed for high quantities of fasteners. We have installed this system on the A380 Stage 0 LVER lower panel wing machines and feed 5 diameters, 10 grips each, for a total of 50 different fastener types. This system moves 547 total fasteners per ship set from manual feed to automatic feed, saving considerable build time.
Technical Paper

Simply Supported Retractable Top Beam for Wing Major Assembly Jig

A large free-standing structure is constructed to positively position the spar and related components in the major assembly jig of the wing for a military transport aircraft. The beam of this structure is mounted on mechanisms enabling the lateral retraction of the beam and tooling to provide full part loading access and extraction of a completed wing. The free-standing nature of this design also allows full integration of an automated drilling machine into the jig.
Technical Paper

Self Contained Portable AFDE With On-Board CNC, Custom Operator Interface and RF Network

Automated Floor Drilling Equipment (AFDE) have been used at Boeing for drilling floor panel, galley, lavatory and other holes in Boeing planes. New controller and drill spindle designs made it possible to redesign the AFDE as a self-contained unit with on-board CNC, custom operator interface, RF network and more compact drill spindles for increased robustness and versatility.
Technical Paper

Robotic Drilling System for 737 Aileron

Boeing's wholly owned subsidiary in Australia, Hawker de Havilland produces all ailerons for the Boeing 737 family of aircraft. Increasing production rates required to meet market demand drove the requirements for a new updated approach to assembly of these parts. Using lean principals, a pulsed flow line approach was developed. A component of this new line is the integration of a flexible robotic drilling/trimming system. The new robotic system is required to meet aggressive tack time targets with high levels of reliability. The selected system was built on a Kuka KR360-2 conventional articulated arm robot. A significant challenge of this project was the requirement for the process head to work efficiently on an aileron in an existing jig. As a result a new side-mounted drill and trim end effector was developed. Automated tool changers for both cutters and pressure foot assemblies eliminated the requirement for in- process manual intervention.
Technical Paper

Rivet Gripper and Offset Collar Gripper for Wing Panel Riveting

Robotic gripper technology has been integrated into CNC riveting machines. Handling fasteners efficiently is critical in automated wing panel riveting. Computer controlled rivet gripper and collar gripper technology has been developed that demonstrates high reliability and decreased fastener cycle times
Technical Paper

Process Development for Use of AERAC

Two Automated Electromagnetic Riveting Assembly Cells (AERAC) were manufactured for Textron Aerostructures by Electroimpact, Inc. The AERAC installs the final rivets in the A330/A340 upper wing panel in the floor assembly jig. At Textron for each wing the corresponding floor assembly jigs for each wing are lined up end to end. An operating procedure in which the formboards are removed in bays allows efficient operation of an in the jig riveter such as the AERAC. Specialized machine codes developed for the AERAC allows quick fully programmed stringer to stringer jumps of the stringer side offset tooling. The AERAC is programmed entirely from a CATIA drawing of the part. Of the 5 axes of rivet data available only two are retained for use by the AERAC.
Technical Paper

Offset Fastening Flex Track

Flex Track Drilling systems have been successfully implemented into several production environments and scenarios over the past couple of years. They continue to see a high demand where traditional machine tool implementations might be prohibitive due to cost or existing jig structures. This demand for innovation has led to a unique Flex Track design termed an Offset Flex Track that not only works between the vacuum rails, but can work beyond the envelope of the rails. This allows the machine to be used in situations such as the leading edge of wings where the vacuum rails cannot straddle the work envelope. The next evolution of this Offset machine is the introduction of final fastener installation onto the head using an onboard rivet gun. In addition, the camera used to locate datum points on the fuselage is now integrated into the nose piece, eliminating the need for a tool change to a spindle mounted camera.
Technical Paper

New Generation Automated Fastener Feed Systems

New fastener feeding approaches are compared with existing bowl feeders and hoppers. A “smart” hopper for headed fasteners and slug rivets combines a fastener sensor with robust mechanics. The coiled tube magazine system uses briefcase sized magazines with integral escapements. These magazines can handle slugs or headed fasteners. For slug rivets, a magazine based system uses off-line loading to eliminate system slow-down due to debris or bulk fastener problems. A system for collars and nuts can feed various fasteners down a flexible tube to the installation point, requiring ten seconds to change fasteners.
Technical Paper

Method of Accurate Countersinking and Rivet Shaving

Wing skin riveting and bolting requires the surface to be flush to +/–.025mm(.001″) to produce an acceptable finish. Using the method described in this paper, automated wing riveting technology and panel assembly techniques can achieve better shave height and countersink accuracies than have previously been possible in production.
Technical Paper

Medium Wave Infrared Heater for High-Speed Fiber Placement

Electroimpact, in cooperation with a large airframe manufacturer, has developed Automated Fiber Placement equipment capable of depositing material at speeds in excess of 2000 inches per minute. As the machine lays down each new ply of material, the area forward to machine motion is heated just in advance of pressing the tape against the substrate. A fast-reacting, high-power infrared emitter heats this area quickly and safely. The design of these heaters is the subject of this paper.
Technical Paper

Low Voltage Electromagnetic Lockbolt Installation

British Aerospace, Airbus Ltd., Chester, UK manufactures the main wing box assembly for all current Airbus programs. Titanium interference fasteners are used in large numbers throughout these aircraft structures. On the lower wing skin of the A320 alone there are approximately 11,000 of this fastener type. Currently, the majority of these fasteners are manually installed using pneumatic or hydraulic tooling. British Aerospace engineers recognized the significant potential which automation offers to reduce these current labor intensive installation methods. Electroimpact proposed extending Low Voltage Electromagnetic Riveter (LVER) technology to the automatic installation of these interference fasteners as well as rivets. Close liaison between Airbus and Electroimpact engineers resulted in the development of an automated LVER based lockbolt installation system, which is currently undergoing evaluation.
Technical Paper

Lockbolt Qualification Testing for Wing Panel Assemblies

This paper gives an outline of testing carried out in conjunction with Electroimpact to support the introduction of the A319/A320/A321 and A340-500/600 Panel Assembly Cells in Broughton, UK. Testing compared the percussion insert/EMR swaging of lockbolts with existing hydraulic installation methods. Tests included pre-load tension tests, ultimate tension load tests, tension fatigue tests, high-load lap shear fatigue tests, static lap shear tests, a pressure leak test, and metallurgical examination. Fastener configurations tested covered diameters from 1/4, 5/16, 3/8, and 7/16 of an inch. Joint materials conformed to ABM3-1031 (7150-T651 plate), stump-type lockbolts to ABS0550VHK (Huck LGPS4SCV), and collars to ASNA2025 (Huck 3SLC-C). Some pull-type lockbolts to ABS0548VHK (Huck LGPL4SCV) were also tested as noted.
Technical Paper

Lightweight HH503 Handheld Riveter

The handheld (HH) electromagnetic riveter (EMR) has been proven to be an effective means of installing rivets up to 3/8″ diameter. However, early versions were heavy and cumbersome to use. A new generation of handheld riveting systems has been developed with substantially reduced weight and improved ergonomics by incorporating a spring-damper recoil reduction system. Additional improvements include a simpler and more robust control system and a 0-1000V voltage range to improve efficiency.
Technical Paper

Integration and Qualification of the HH500 Hand Operated Electromagnetic Riveting System on the 747 Section 11

Hand installation of 3/8", 5/16" and 1/4" diameter fatigue head style fasteners is required on some areas of 747 section 11 (center wing). The 3/8" diameter fasteners can require between 45-60 seconds to upset using conventional pneumatic riveting guns. As part of Boeing’s continuing effort to reduce cycle time and improve the factory working environment, a Boeing Quality Circle Team proposed using LVER technology as an alternative to conventional pneumatic percussion riveting hammers The hand operated HH500 system was developed in response to this request. The HH500 single shot upset reduces installation time as well as the noise levels and vibration experienced by the operators. The design of this system and the integration onto the factory floor are presented. The LVER forming rate is significantly higher than that of conventional pneumatic and hydraulic processes.
Journal Article

Improving AFP Cell Performance

The Automated Fiber Placement (AFP) machine layup run time in large scale AFP layup cells consumes approximately 30% of the entire part build time. Consequentially, further reductions to the run time of the AFP machine part programs result in small improvements to the overall cycle time. This document discusses how Electroimpact's integrated system and cell design reduces the overall cycle time by reducing the time spent on non-machine processes.
Technical Paper

Implementation of the HH550 Electromagnetic Riveter and Multi-Axis Manlift for Wing Panel Pickup

A new wing panel riveting cell capable of replacing tack fasteners and performing small repair jobs has been developed. Using two mobile scissor lift platforms with electromagnetic riveters mounted on each, the operators can access every portion of the wing panel without the use of ladders or platforms. This method minimizes fatigue, allows workers to carry all tools and supplies with them, meets current safety standards and minimizes coldworking of the components.
Technical Paper

High-Speed Fiber Placement on Large Complex Structures

Automated Fiber Placement (AFP) equipment has been developed capable of laying fiber in excess of 2000 inches per minute on full-size, complex parts. Two such high-speed machines will be installed for production of a nose section for a large twin-aisle commercial aircraft fuselage at Spirit AeroSystems in Wichita, Kansas along with a rotator for the fuselage mandrel. The problem of cutting and adding on the fly at these speeds requires thorough re-evaluation of all aspects of the technology, including the mechanical, controls, servos systems, and programming systems. Factors to be considered for high speed cut and add on the fly are discussed.
Technical Paper

HAWDE Five Axis Wing Surface Drilling Machine

The Horizontal Automated Wing Drilling Equipment (HAWDE) machine is an enabling technology for automated drilling of large aircraft parts. HAWDE is a five axis drilling machine that operates over the upper and lower surfaces of eight wings, each more than 40 meters long and four stories tall. The machine accesses the entire A380 wing using a combination of elevators and a machine transporter that carries the machine from surface to surface. HAWDE drills holes in spars, butt splices, and rib feet in the wing box final assembly jigs for A380.