Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

True Offset Fastening

2006-01-12
2006-01-3170
An automated machine has been designed with true offset fastening to join shear-tie/frame assemblies to the fuselage of the Boeing 787 Dreamliner. The machine can access fasteners located close to structural components that are very deep. This is accomplished by offsetting the fastening axis from the axis of the head for true offset fastening. The head can be positioned next to the structural component and the offset fastening tooling ‘reaches’ out to the fastener location (Figure 1). By using a true offset, the fastening machine can access fasteners that would be otherwise inaccessible by traditional automated equipment. The machine can also be lighter and more accurate when compared to fastening machines with traditional tooling.
Technical Paper

Self Contained Portable AFDE With On-Board CNC, Custom Operator Interface and RF Network

2000-09-19
2000-01-3011
Automated Floor Drilling Equipment (AFDE) have been used at Boeing for drilling floor panel, galley, lavatory and other holes in Boeing planes. New controller and drill spindle designs made it possible to redesign the AFDE as a self-contained unit with on-board CNC, custom operator interface, RF network and more compact drill spindles for increased robustness and versatility.
Technical Paper

Process Development for Use of AERAC

1991-11-01
912650
Two Automated Electromagnetic Riveting Assembly Cells (AERAC) were manufactured for Textron Aerostructures by Electroimpact, Inc. The AERAC installs the final rivets in the A330/A340 upper wing panel in the floor assembly jig. At Textron for each wing the corresponding floor assembly jigs for each wing are lined up end to end. An operating procedure in which the formboards are removed in bays allows efficient operation of an in the jig riveter such as the AERAC. Specialized machine codes developed for the AERAC allows quick fully programmed stringer to stringer jumps of the stringer side offset tooling. The AERAC is programmed entirely from a CATIA drawing of the part. Of the 5 axes of rivet data available only two are retained for use by the AERAC.
Technical Paper

Medium Wave Infrared Heater for High-Speed Fiber Placement

2007-09-17
2007-01-3842
Electroimpact, in cooperation with a large airframe manufacturer, has developed Automated Fiber Placement equipment capable of depositing material at speeds in excess of 2000 inches per minute. As the machine lays down each new ply of material, the area forward to machine motion is heated just in advance of pressing the tape against the substrate. A fast-reacting, high-power infrared emitter heats this area quickly and safely. The design of these heaters is the subject of this paper.
Technical Paper

Implementation of the HH550 Electromagnetic Riveter and Multi-Axis Manlift for Wing Panel Pickup

1996-10-01
961883
A new wing panel riveting cell capable of replacing tack fasteners and performing small repair jobs has been developed. Using two mobile scissor lift platforms with electromagnetic riveters mounted on each, the operators can access every portion of the wing panel without the use of ladders or platforms. This method minimizes fatigue, allows workers to carry all tools and supplies with them, meets current safety standards and minimizes coldworking of the components.
Technical Paper

Automated Floor Drilling Equipment for the Next Generation 737

1997-09-30
972809
Boeing needed a process to replace hand drilling for floor panel holes and galley and lavatory mounting locator holes in the floor grid of the completed 737 fuselage. Electroimpact developed a process, and the 737 AFDE machine, that is a substantial improvement over existing technology. It provides full CNC control, quick reconfiguration of hole patterns, fast drilling of up to 3000 holes in one 8-hour shift, drills both titanium and aluminum and works inside the fuselage.
X