Refine Your Search

Topic

Search Results

Technical Paper

Validation of Advanced Combustion Models Applied to Two-Stage Combustion in a Heavy Duty Diesel Engine

2009-04-20
2009-01-0714
Two advanced combustion models have been validated with the KIVA-3V Release 2 code in the context of two-stage combustion in a heavy duty diesel engine. The first model uses CHEMKIN to directly integrate chemistry in each computational cell. The second model accounts for flame propagation with the G-equation, and CHEMKIN predicts autoignition and handles chemistry ahead of and behind the flame front. A Damköhler number criterion was used in flame containing cells to characterize the local mixing status and determine whether heat release and species change should be a result of flame propagation or volumetric heat release. The purpose of this criterion is to make use of physical and chemical time scales to determine the most appropriate chemistry model, depending on the mixture composition and thermodynamic properties of the gas in each computational cell.
Technical Paper

Use of a Pressure Reactive Piston to Control Diesel PCCI Operation - A Modeling Study

2006-04-03
2006-01-0921
The heavy-duty diesel engine industry is required to meet stringent emission standards. There is also the demand for more fuel efficient engines by the customer. In a previous study on an engine with variable intake valve closure timing, the authors found that an early single injection and accompanying premixed charge compression ignition (PCCI) combustion provides advantages in emissions and fuel economy; however, unacceptably high peak pressures and rates of pressure-rise impose a severe operating constraint. The use of a Pressure Reactive Piston assembly (PRP) as a means to limit peak pressures is explored in the present work. The concept is applied to a heavy-duty diesel engine and genetic algorithms (GA) are used in conjunction with the multi-dimensional engine simulation code KIVA-3V to provide an optimized set of operating variables.
Technical Paper

Transient High-Pressure Hydrogen Jet Measurements

2006-04-03
2006-01-0652
Schlieren visualization was performed to investigate hydrogen injection into a quiescent chamber. The injection pressures investigated were 52 and 104 bar, and the chamber density ranged from 1.15 to 12.8 kg/m3, giving rise to underexpanded jets for all conditions. The expansion waves outside the nozzle were clearly visible with hydrogen, and the effect was confirmed with studies of nitrogen injected into a nitrogen environment. The distance between the expansion wave fronts was found to scale directly with the ratio of the exit pressure to the chamber pressure. The jet tip penetration rate was measured and was found to increase with injection pressure, and decrease with chamber density as expected. A mass- and momentum-preserving scheme was developed to relate the underexpanded jet to a subsonic jet of larger diameter.
Technical Paper

The Influence of Physical Input Parameter Uncertainties on Multidimensional Model Predictions of Diesel Engine Performance and Emissions

2000-03-06
2000-01-1178
Multidimensional models require physical inputs about the engine operating conditions. This paper explores the effects of unavoidable experimental uncertainties in the specification of important parameters such as the start of injection, duration of injection, amount of fuel injected per cycle, gas temperature at IVC, and the spray nozzle hole diameter. The study was conducted for a Caterpillar 3401 heavy-duty diesel engine for which extensive experimental data is available. The engine operating conditions include operation at high and low loads, with single and double injections. The computations were performed using a modified version of the KIVA3V code. Initially the model was calibrated to give very good agreement with experimental data in terms of trends and also to a lesser degree in absolute values, over a range of operating conditions and injection timings.
Technical Paper

Study of Diesel Engine Size-Scaling Relationships Based on Turbulence and Chemistry Scales

2008-04-14
2008-01-0955
Engine design is a time consuming process in which many costly experimental tests are usually conducted. With increasing prediction ability of engine simulation tools, engine design aided by CFD software is being given more attention by both industry and academia. It is also of much interest to be able to use design information gained from an existing engine design of one size in the design of engines of other sizes to reduce design time and costs. Therefore it is important to study size-scaling relationships for engines over wide range of operating conditions. This paper presents CFD studies conducted for two production diesel engines - a light-duty GM-Fiat engine (0.5L displacement) and a heavy-duty Caterpillar engine (2.5L displacement). Previously developed scaling arguments, including an equal spray penetration scaling model and an extended, equal flame lift-off length scaling model were employed to explore the parametric scaling connections between the two engines.
Technical Paper

Split-Spray Piston Geometry Optimized for HSDI Diesel Engine Combustion

2003-03-03
2003-01-0348
A combustion chamber geometry design optimization study has been performed on a high-speed direct-injection (HSDI) automotive diesel engine at a part-load medium-speed operating condition using both modeling and experiments. A model-based optimization was performed using the KIVA-GA code. This work utilized a newly developed 6-parameter automated grid generation technique that allowed a vast number of piston geometries to be considered during the optimization. Other salient parameters were included that are known to have an interaction with the chamber geometry. They included the start of injection (SOI) timing, swirl ratio (SR), exhaust gas recirculation percentage (EGR), injection pressure, and the compression ratio (CR). The measure of design fitness used included NOx, soot, unburned hydrocarbon (HC), and CO emissions, as well as the fuel consumption. Subsequently, an experimental parametric study was performed using the piston geometry found by the numerical optimization.
Technical Paper

Simultaneous Reduction of Engine Emissions and Fuel Consumption Using Genetic Algorithms and Multi-Dimensional Spray and Combustion Modeling

2000-06-19
2000-01-1890
A computational optimization study is performed for a heavy-duty direct-injection diesel engine using the recently developed KIVA-GA computer code. KIVA-GA performs full cycle engine simulations within the framework of a Genetic Algorithm (GA) global optimization code. Design fitness is determined using a one-dimensional gas -dynamics code for calculation of the gas exchange process, and a three-dimensional CFD code based on KIVA-3V for spray, combustion and emissions formation. The performance of the present Genetic Algorithm is demonstrated using a test problem with a multi-modal analytic function in which the optimum is known a priori. The KIVA-GA methodology is next used to simultaneously investigate the effects of six engine input parameters on emissions and performance for a high speed, medium load operating point for which baseline experimental validation data is available.
Technical Paper

Performance Optimization of Diesel Engines with Variable Intake Valve Timing Via Genetic Algorithms

2005-04-11
2005-01-0374
The strategy of variable Intake Valve Closure (IVC) timing, as a means to improve performance and emission characteristics, has gained much acceptance in gasoline engines; yet, it has not been explored extensively in diesel engines. In this study, genetic algorithms are used in conjunction with the multi-dimensional engine simulation code KIVA-3V to investigate the optimum operating variables for a typical heavy-duty diesel engine working with late IVC. The effects of start-of-injection timing, injection duration and exhaust gas recirculation were investigated along with the intake valve closure timing. The results show that appreciable reductions in NOx+HC (∼82%), soot (∼48%) and BSFC (∼7.4%) are possible through this strategy, as compared to a baseline diesel case of (NOx+HC) = 9.48g/kW-hr, soot = 0.17 g/kW-hr and BSFC = 204 g-f/kW-hr. The additional consideration of double injections helps to reduce the high rates of pressure rise observed in a single injection scheme.
Technical Paper

Parameters That Affect the Impact of Auxiliary Gas Injection in a DI Diesel Engine

2000-03-06
2000-01-0233
The authors used auxiliary gas injection (AGI) to increase in-cylinder mixing during the latter portion of combustion in a direct injection (DI) diesel engine in order to reduce soot emissions without affecting NOx. Experiments were conducted using various gas injection directions and compositions to explore the effect of these parameters. Simulations were employed to provide additional insight. AGI direction was found to have a profound impact on soot emissions. Researchers suggested that this was due to changes in the fuel spray-gas jet interaction with injection direction. Simulations supported this theory and suggested that the number of soot clouds affected by the gas jet may also be a factor. The oxygen content of the gas jet was also found to have an influence on emissions. Researchers found that, when the oxygen content of the gas jet was increased, soot emissions decreased. However, this was found to have a detrimental affect on NO.
Journal Article

Optimization of a HSDI Diesel Engine for Passenger Cars Using a Multi-Objective Genetic Algorithm and Multi-Dimensional Modeling

2009-04-20
2009-01-0715
A multi-objective genetic algorithm coupled with the KIVA3V release 2 code was used to optimize the piston bowl geometry, spray targeting, and swirl ratio levels of a high speed direct injected (HSDI) diesel engine for passenger cars. Three modes, which represent full-, mid-, and low-loads, were optimized separately. A non-dominated sorting genetic algorithm II (NSGA II) was used for the optimization. High throughput computing was conducted using the CONDOR software. An automated grid generator was used for efficient mesh generation with variable geometry parameters, including open and reentrant bowl designs. A series of new spray models featuring reduced mesh dependency were also integrated into the code. A characteristic-time combustion (CTC) model was used for the initial optimization for time savings. Model validation was performed by comparison with experiments for the baseline engine at full-, mid-, and low-load operating conditions.
Technical Paper

Numerical Modeling of Diesel Engine Combustion and Emissions Under HCCI-Like Conditions With High EGR Levels

2003-03-03
2003-01-1087
This study considers combustion processes in a heavy-duty diesel engine at various low emissions operating conditions. The start-of-injection timings varied from -20 to 5 ATDC while the EGR levels varied from 6% to 44%. At certain conditions, HCCI-like combustion characteristics were observed under which low emissions could be achieved. The numerical model used is an improved version of KIVA-3V that can simulate spray breakup and mixture autoignition over a wide range of conditions. The ignition and combustion processes were simulated using both detailed and standard (simplified) chemistry models. Model results show that engine combustion and emissions can be predicted reasonably well under the current conditions. The trends of NOx and soot emissions with respect to the injection timings and EGR levels were well captured. However, it was found that the model over-predicted the NOx emissions in certain early injection cases.
Technical Paper

Multidimensional Modeling of the Effects of Radiation and Soot Deposition in Heavy-duty Diesel Engines

2003-03-03
2003-01-0560
A radiation model based on the Discrete Ordinates Method (DOM) was incorporated into the KIVA3v multidimensional code to study the effects of soot and radiation on diesel engine performance at high load. A thermophoretic soot deposition model was implemented to predict soot concentrations in the near-wall region, which was found to affect radiative heat flux levels. Realistic, non-uniform combustion chamber wall surface temperature distributions were predicted using a finite-element-based heat conduction model for the engine metal components that was coupled with KIVA3v in an iterative scheme. The more accurate combustion chamber wall temperatures enhanced the accuracy of both the radiation and soot deposition models as well as the convective heat transfer model. For a basline case, (1500 rev/min, 100% load) it was found that radiation can account for as much as 30% of the total wall heat loss and that soot deposition in each cycle is less than 3% of the total in-cylinder soot.
Journal Article

Modeling the Effects of In-Cylinder Flows on HSDI Diesel Engine Performance and Emissions

2008-04-14
2008-01-0649
In the present work the three-dimensional KIVA CFD code was used to simulate the combustion process in a HSDI diesel engine. State-of-the-art models, including the KH-RT spray breakup model, the RNG k-ε turbulence model, and a n-heptane reduced chemistry including reduced GRI NOx mechanism were used. The performances of two combustion models, KIVA-CHEMKIN and GAMUT (KIVA-CHEMKIN-G), coupled with 2-step and multi-step phenomenological soot models were compared. The numerical results were compared with available experimental data obtained from an optically accessible HSDI engine and good agreement was obtained. To assess the effects of the in-cylinder flow field on combustion and emissions, off-centered swirl flows were also considered. In these studies, the swirl center was initialized at different positions in the chamber for different cases to simulate the effects of different intake flow arrangements.
Technical Paper

Modeling the Effects of EGR and Injection Pressure on Emissions in a High-Speed Direct-Injection Diesel Engine

2001-03-05
2001-01-1004
Experimental data is used in conjunction with multi-dimensional modeling in a modified version of the KIVA-3V code to characterize the emissions behavior of a high-speed, direct-injection diesel engine. Injection pressure and EGR are varied across a range of typical small-bore diesel operating conditions and the resulting soot-NOx tradeoff is analyzed. Good agreement is obtained between experimental and modeling trends; the HSDI engine shows increasing soot and decreasing NOx with higher EGR and lower injection pressure. The model also indicates that most of the NOx is formed in the region where the bulk of the initial heat release first takes place, both for zero and high EGR cases. The mechanism of NOx reduction with high EGR is shown to be primarily through a decrease in thermal NOx formation rate.
Technical Paper

Modeling of a Turbocharged DI Diesel Engine Using Artificial Neural Networks

2002-10-21
2002-01-2772
Artificial neural networks (ANN) have been recognized as universal approximators for nonlinear continuous functions and actively applied in engine research in recent years [1, 2, 3, 4, 5, 6, 7 and 8]. This paper describes the methodology and results of using the ANN to model a turbocharged DI diesel engine. The engine was simulated using the CFD code (KIVA-ERC) over a wide range of operating conditions, and numerical simulation results were used to train the ANN. An efficient data collection methodology using the Design of Experiments (DOE) techniques was developed to select the most characteristic engine operating conditions and hence the most informative data to train the ANN. This approach minimizes the time and cost of collecting training data from either computational or experimental resources. The trained ANN was then used to predict engine parameters such as cylinder pressure, cylinder temperature, NOx and soot emissions, and cylinder heat transfer.
Technical Paper

Modeling and Experiments of HCCI Engine Combustion Using Detailed Chemical Kinetics with Multidimensional CFD

2001-03-05
2001-01-1026
Detailed chemical kinetics was implemented in the KIVA-3V multidimensional CFD code to study the combustion process in Homogeneous Charge Compression Ignition (HCCI) engines. The CHEMKIN code was implemented such that the chemistry and flow solutions were coupled. Detailed reaction mechanisms were used to simulate the fuel chemistry of ignition and combustion. Effects of turbulent mixing on the reaction rates were also considered. The model was validated using the experimental data from two modified heavy-duty diesel engines, including a Volvo engine and a Caterpillar engine operated at the HCCI mode. The results show that good levels of agreement were obtained using the present KIVA/CHEMKIN model for a wide range of engine conditions, including various fuels, injection systems, engine speeds, and EGR levels. Ignition timings were predicted well without the need to adjust any kinetic constants.
Technical Paper

Modeling and Experiments of Dual-Fuel Engine Combustion and Emissions

2004-03-08
2004-01-0092
The combustion and emissions of a diesel/natural gas dual-fuel engine are studied. Available engine experimental data demonstrates that the dual-fuel configuration provides a potential alternative to diesel engine operation for reducing emissions. The experiments are compared to multi-dimensional model results. The computer code used is based on the KIVA-3V code and consists of updated sub-models to simulate more accurately the fuel spray atomization, auto-ignition, combustion and emissions processes. The model results show that dual-fuel engine combustion and emissions are well predicted by the present multi-dimensional model. Significant reduction in NOx emissions is observed in both the experiments and simulations when natural gas is substituted for diesel fuel. The HC emissions are under predicted by numerical model as the natural gas substitution is increased.
Technical Paper

Modeling Diesel Engine NOx and Soot Reduction with Optimized Two-Stage Combustion

2006-04-03
2006-01-0027
A multi-dimensional Computational Fluid Dynamics (CFD) code with detailed chemistry, the KIVA-CHEMKIN-GA code, was employed in this study, where Genetic Algorithms (GA) were used to optimize heavy-duty diesel engine operating parameters. A two-stage combustion (TSC) concept was explored to optimize the combustion process at high speed (1737 rev/min) and medium load (57% load). Two combustion modes were combined in this concept. The first stage is ideally Homogeneous Charge Compression Ignition (HCCI) combustion and the second stage is diffusion combustion under high temperature and low oxygen concentration conditions. This can be achieved for example by optimization of two-stage combustion using multiple injection or sprays from two different injectors.
Technical Paper

Modeling Combustion and Emissions of HSDI Diesel Engines Using Injectors with Different Included Spray Angles

2006-04-03
2006-01-1150
Combustion in an HSDI diesel engine using different injectors to realize low emissions is modeled using detailed chemical kinetics in this study. Emission characteristics of the engine are investigated using injectors that have different included spray angles, ranging from 50 to 130 degrees. The engine was operated under PCCI conditions featuring early injection times, high EGR levels and high intake temperatures. The Representative Interactive Flamelet (RIF) model was used with the KIVA code for combustion and emission modeling. Modeling results show that spray targeting plays an important role in determining the in-cylinder mixture distributions, which in turn affect the resulting pollutant emissions. High soot emissions are observed for injection conditions that result in locally fuel rich regions due to spray impingement normal to the piston surface.
Technical Paper

Methods and Results from the Development of a 2600 Bar Diesel Fuel Injection System

2000-03-06
2000-01-0947
An ultrahigh injection pressure, common rail fuel injection system was designed, fabricated, and evaluated. The result was a system suitable for high-power density diesel engine applications. The main advantages of the concept are a very short injection duration capability, high injection pressure independent of engine speed, a simplified electronic control valve, and good packaging flexibility. Two prototype injectors were developed. Tests were performed on an injector flow bench and in a single cylinder research engine. The first prototype delivered 320 mm3 within 2.5 milliseconds with a 2600 bar peak injection pressure. A conventional minisac nozzle was used. The second prototype employed a specially designed pintle nozzle producing a near-zero cone angle liquid jet impinging on a 9-mm cylindrical target centered on the piston bowl crown (OSKA-S system). The second prototype had the capability to deliver 316mm3 in 0.97ms.
X