Refine Your Search

Search Results

Viewing 1 to 9 of 9
Technical Paper

Test Variability of Emission and Fuel Economy Measurements Using The 1975 Federal Test Procedure

Several sets of repetitive test data using the 1975 Federal Test Procedure ('75 FTP) have been analyzed to establish the variability of each component measured during each phase of the test. The variability characteristics of four different emission control systems have been discussed and compared. The overall variabilities of the '75 FTP composite values have been assessed at ±6% for hydrocarbons and CO, ±3% for NOx, and ±1% for CO2. The extremely repeatable behavior of the CO2 emissions is utilized to calculate the fuel economy during the test. This calculation is discussed and some fuel economy results from repetitive tests are presented.
Technical Paper

Passenger Car Fuel Economy During Non-Urban Driving

The use of fuel economy data from the Federal Test Procedure (FTP) has provided a substantial amount of data on the fuel economy of passenger cars in urban driving conditions. Since the FTP does not represent the type of driving done in rural areas, especially on highways, a driving cycle to assess highway fuel economy was a desirable supplement to the FTP. The new Environmental Protection Agency (EPA) “highway” cycle was constructed from actual speed-versus-time traces generated by an instrumented test car driven over a variety of nonurban roads and highways. This cycle reflects the correct proportion of operation on each of the four major types of nonurban roads and preserves the non-steady-state characteristics of real-world driving. The average speed of the cycle is 48.2 mph and the cycle length is 10.2 miles, close to the average nonurban trip length.
Technical Paper

Passenger Car Fuel Economy - Trends and Influencing Factors

This paper discusses some trends and influencing factors in passenger car fuel economy. Fuel economy and fuel consumption were calculated by a carbon balance method from HC, CO, and CO2 emissions measured by the 1972 Federal Test Procedure. The information presented was derived from nearly 4000 tests of passenger cars ranging from 1957 production models to 1975 prototypes. Data are presented for various model year and vehicle weight categories. Trends in fuel economy are discussed on an overall sales-weighted basis and for each individual weight class. Some of the factors that influence fuel economy are quantified through the use of a regression analysis. Particular emphasis is placed on the differences in fuel economy between those vehicles that were subject to federal emission regulations and those vehicles that were not. Three ways to characterize vehicle specific fuel consumption are presented and discussed.
Technical Paper

Motorcycle Emissions, Their Impact, and Possible Control Techniques

Seven motorcycles, ranging in size from 100 to 1200 cm3, were tested for emissions characterization purposes. They were operated on the federal seven-mode test procedure (for 1971 and older light-duty vehicles), the federal LA-4 test procedure (for 1972 and later LDVs), and under a variety of steady-state conditions. Four of the machines tested had 4-stroke engines, and the other three had 2-stroke engines. Emissions which were measured included hydrocarbons, CO, CO2, NO, NOx, O2, aldehydes, light hydrocarbons, particulates, and smoke. Emissions of SOx were estimated on the basis of fuel consumed, and evaporative hydrocarbon losses were also estimated. Crankcase “blowby” emissions from one 4-stroke machine were measured. The impact of motorcycles on national pollutant totals was estimated, based on the test results and information from a variety of sources on national population and usage of motorcycles.
Technical Paper

Exhaust Emissions 1966-1972 Model Year Light Duty Motor Vehicles

This report describes the results of a surveillance study initiated by the U.S. Environmental Protection Agency to measure gaseous exhaust emissions from 1020 light-duty motor vehicles. This project was the second effort in a continuing program using the CVS Federal Test Procedure. Selected privately-owned vehicles, drawn randomly from six metropolitan areas, were tested in as-received condition. The emissions data obtained from these 1966-1972 model-year vehicles are reported in grams per mile of unburned hydrocarbons, carbon monoxide, carbon dioxide and oxides of nitrogen while fuel economy is reported in mpg as determined over the Federal Driving Schedule.
Technical Paper

Emissions from In-Use 1970-1971 Diesel-Powered Trucks and Buses

A fleet of 64 heavy-duty 1970-71 model trucks and buses powered by a variety of diesel engines were tested periodically to determine exhaust smoke behavior. Smoke tests were made when the vehicle was new or nearly new and at four month intervals thereafter, or until 160,934 km (100,000 miles) odometer reading was reached. Gaseous emissions of hydrocarbon (HC), carbon monoxide (CO), and nitric oxide (NO) were measured at one point early in the project. Both smoke and gaseous emission tests were performed with chassis versions of the engine dynamometer Federal Test Procedures (FTP). Results in terms of “a” (acceleration), “b” (lugging), and “c” (peak) smoke factors versus mileage are reported for the 13 engine-vehicle-application groupings.
Technical Paper

Emissions Control of Gasoline Engines for Heavy-Duty Vehicles

This paper summarizes an investigation of reductions in exhaust emission levels attainable using various techniques appropriate to gasoline engines used in vehicles over 14,000 lbs GVW. Of the eight gasoline engines investigated, two were evaluated parametrically resulting in an oxidation and reduction catalyst “best combination” configuration. Four of the engines were evaluated in an EGR plus oxidation catalyst configuration, and two involved only baseline tests. Test procedures used in evaluating the six “best combination” configurations include: three engine emission test procedures using an engine dynamometer, a determination of vehicle driveability, and two vehicle emission test procedures using a chassis dynamometer. Dramatic reductions in emissions were attained with the catalyst “best combination” configurations. Engine durability, however, was not investigated.
Technical Paper

Emission Effects of Shell LOW NOX Fuel on a 1990 Model Year Heavy Heavy-Duty Diesel Engine

The Environmental Protection Agency (EPA) recently tested a clean diesel fuel developed by Dion & Sons for use in stationary sources. This fuel is known as Amber 363 in Southern California and its technology is licensed outside of the Southern California area to Shell Oil Products Company for use as a stationary source fuel. The fuel, hereafter referred to as “Shell LOW NOX Fuel,” was tested in a 1990 model year heavy heavy-duty diesel engine using both the transient Federal Test Procedure (FTP) for on-highway heavy-duty engines, the steady-state FTP for nonroad heavy-duty engines, and the steady-state generator set test cycle. For each test, EPA measured hydrocarbon (HC), carbon monoxide (CO), nitrogen oxides (NOx) and particulate matter (PM) emissions. Transient testing showed that the Shell LOW NOX Fuel lowers NOx, HC and PM emissions with no statistically significant change in CO emissions for both cold-starts and hot-starts when compared to diesel certification test fuel.
Technical Paper

Effect of Laboratory Ambient Conditions on Exhaust Emissions

A program was conducted to determine the effect of temperature and humidity on exhaust emissions from automotive engines. The objective was to determine if the effects were of sufficient magnitude to require the application of correction factors to measured exhaust emissions to standard humidity and temperature values. Both American and foreign-made vehicles were tested at 20 combinations of ambient temperature and humidity. The effect of temperature and humidity was found to be both unpredictable and of little significance for hydrocarbon and carbon monoxide emissions. No correction factors were developed for these exhaust gas constituents. The effect of temperature was found to be of little significance for oxides of nitrogen. However, humidity effects were found to be significant and predictable for oxides of nitrogen.