Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

A Sensitivity Study on Inertance Frequency Response Function through Non-Parametric Variability Approach

2017-03-28
2017-01-0445
In recent years, there is increasing demand for every CAE engineer on their confidence level of the virtual simulation results due to the upfront robust design requirement during early stage of an automotive product development. Apart from vehicle feel factor NVH characteristics, there are certain vibration target requirements at system or component level which need to be addressed during design stage itself in order to achieve the desired functioning during vehicle operating conditions. Vehicle passive safety system is one which primarily consists of acceleration sensors, control module and air-bag deployment system. Control module’s decision is based on accelerometer sensor signals so that its mounting locations should meet the sufficient inertance or dynamic stiffness performance in order to avoid distortion in signals due to its structural resonances.
Technical Paper

An Investigation of Body Inertance Response for Occupant Safety Control Module Attachment Regions

2016-04-05
2016-01-0473
Current generation passenger vehicles are built with several electronic sensors and modules which are required for the functioning of passive safety systems. These sensors and modules are mounted on the vehicle body at locations chosen to meet safety functionality requirements. They are mounted on pillars or even directly on panels based on specific packaging requirements. The body panel or pillar poses local structural resonances and its dynamic behavior can directly affect the functioning of these sensors and modules. Hence a specific inertance performance level at the mounting locations is required for the proper functioning of those sensors and modules. Drive point modal frequency response function (FRF) analysis, at full vehicle model for the frequency range up to 1000 Hz, is performed using finite element method (FEM) and verified against the target level along with test correlation.
Technical Paper

Automotive Wheel Metamodeling using Response Surface Methodology (RSM) Technique

2020-04-14
2020-01-1234
Computational cost plays a major role in the performance of scientific and engineering simulation. This in turn makes the virtual validation process complex and time consuming. In the simulation process, achievement of appropriate level of accurate models as close as physical testing is the root for increase in the computational cost. During preliminary phase of product development, it is difficult to identify the appropriate size, shape and other parameters of the component and they will undergo several modifications in concept and other stages. An approximation model called metamodel or surrogate model has developed for reducing these effects and minimizing the computational cost. Metamodel can be used in the place of actual simulation models. Metamodel can be an algorithm or a mathematical relation representing the relations between input and output parameters.
Technical Paper

Prediction of Component Failure using ‘Progressive Damage and Failure Model’ and Its Application in Automotive Wheel Design

2015-04-14
2015-01-1516
Damages (fracture) in metals are caused by material degradation due to crack initiation and growth due to fatigue or dynamic loadings. The accurate and realistic modeling of an inelastic behavior of metals is essential for the solution of various problems occurring in engineering fields. Currently, various theories and failure models are available to predict the damage initiation and the growth in metals. In this paper, the failure of aluminum alloy is studied using progressive damage and failure material model using Abaqus explicit solver. This material model has the capability to predict the damage initiation due to the ductile and shear failure. After damage initiation, the material stiffness is degraded progressively according to the specified damage evolution response. The progressive damage models allow a smooth degradation of the material stiffness, in both quasi-static and dynamic situations.
Technical Paper

Static Loading Analysis of Third Row Floor Duct System Using Finite Element Method

2017-03-28
2017-01-0168
In current scenario, there is an increasing need to have faster product development and achieve the optimum design quickly. In an automobile air conditioning system, the main function of HVAC third row floor duct is to get the sufficient airflow from the rear heating ventilating and air-conditioning (HVAC) system and to provide the sufficient airflow within the leg locations of passenger. Apart from airflow and temperature, fatigue strength of the duct is one of the important factors that need to be considered while designing and optimizing the duct. The challenging task is to package the duct below the carpet within the constrained space and the duct should withstand the load applied by the passenger leg and the luggage. Finite element analysis (FEA) has been used extensively to validate the stress and deformation of the duct under different loading conditions applied over the duct system.
X