Refine Your Search

Topic

Author

Search Results

Technical Paper

Use of Active Vibration Control to Improve Vehicle Refinement while Expanding the Usable Range of Cylinder Deactivation

2019-06-05
2019-01-1571
Cylinder deactivation has been in use for several years resulting in a sizable fuel economy advantage for V8-powered vehicles. The size of the fuel-economy benefit, compared to the full potential possible, is often limited due to the amount of usable torque available in four-cylinder-mode being capped by Noise, Vibration, and Harshness (NVH) sensitivities of various rear-wheel-drive vehicle architectures. This paper describes the application and optimization of active vibration absorbers as a system to attenuate vibration through several paths from the powertrain-driveline into the car body. The use of this strategy for attenuating vibration at strategic points is shown to diminish the need for reducing the powertrain source amplitude. This paper describes the process by which the strategic application of these devices is developed in order to achieve the increased usage of the most fuel efficient reduced-cylinder-count engine-operating-points.
Technical Paper

The Research on Edge Tearing with Digital Image Correlation

2015-04-14
2015-01-0593
Material formability is a very important aspect in the automotive stamping, which must be tested for the success of manufacturing. One of the most important sheet metal formability parameters for the stamping is the edge tear-ability. In this paper, a novel test method has been present to test the aluminum sheet edge tear-ability with 3D digital image correlation (DIC) system. The newly developed test specimen and fixture design are also presented. In order to capture the edge deformation and strain, sample's edge surface has been sprayed with artificial speckle. A standard MTS tensile machine was used to record the tearing load and displacement. Through the data processing and evaluation of sequence image, testing results are found valid and reliable. The results show that the 3D DIC system with double CCD can effectively carry out sheet edge tear deformation. The edge tearing test method is found to be a simple, reliable, high precision, and able to provide useful results.
Technical Paper

Test of Inclined Double Beads on Aluminum Sheets

2018-04-03
2018-01-1221
Draw beads are widely used in the binder of a draw die for regulating the restraining force and control the draw-in of a metal blank. Different sheet materials and local panel geometry request different local draw bead configurations. Even the majority of draw bead is single draw bead, the alternative double draw bead does have its advantages, such as less bending damage may be brought to the sheet material and more bead geometry features available to work on. In this paper, to measure the pulling force when a piece of sheet metal passing through a draw bead on an inclined binder, the AA5XXX and AA6XXX materials were tested and its strain were measured with a digital image correlation (DIC) system. Five different types of double bead configurations were tested. The beads are installed in a Stretch-Bend-Draw-System (SBDS) test device. The clearance between a male and a female bead is 10% thicker than the sheet material. A tensile machine was used to record the pulling force.
Technical Paper

Target Setting Process for Hybrid Electric Drives Using TPA, Jury Study, and Torque Management

2019-06-05
2019-01-1453
The idea of improved efficiency without compromising the “fun to drive” aspect has renewed the auto industry’s interest toward electrification and hybridization. Electric drives gain from having multiple gear ratios which can use advantageous operating set points thus increasing range. Furthermore, they benefit significantly from frequent decelerations and stopping as is experienced in city driving conditions. To recuperate as much energy as possible, deceleration is done at high torque. This presents an interesting but serious sound quality issue in the form of highly tonal whine harmonics of rapidly changing gears that do not track with vehicle speed thus being objectionable to the vehicle occupants. This paper presents an NVH target setting process for a hybrid electric transmission being integrated into two existing vehicles, one belonging to the premium segment and another aimed at enthusiasts with off-road applications.
Technical Paper

Root-Cause Analysis, and Improvement of a Port Fuel Injected V6 Vehicle to Achieve Best-In-Class Sound Quality

2021-08-31
2021-01-1041
This paper will communicate an in-depth investigation uncovering contributing factors defining the desired and undesired acoustic signature of a V6 Vehicle. A transfer path analysis tool is exercised to rank improvement opportunities. These results are used to drive design improvements with the goal of achieving best-in-class sound quality when executed as a system. A cohesive powertrain-vehicle-level acoustic improvement package is executed, improving air induction, intake manifold, both structure and air-core, exhaust-radiated and under-hood-acoustic encapsulation. The acoustic package was validated by jury testing to provide significant refinement enhancement improving predicted 3rd party scores.
Technical Paper

Pedestrian Head Impact, Automated Post Simulation Results Aggregation, Visualization and Analysis Using d3VIEW

2020-04-14
2020-01-1330
Euro NCAP Pedestrian head impact protocol mandates the reduction of head injuries, measured using head injury criteria (HIC). Virtual tools driven design comprises of simulating the impact on the hood and post processing the results. Due to the high number of impact points, engineers spend a significant portion of their time in manual data management, processing, visualization and score calculation. Moreover, due to large volume of data transfer from these simulations, engineers face data bandwidth issues particularly when the data is in different geographical locations. This deters the focus of the engineer from engineering and also delays the product development process. This paper describes the development of an automated method using d3VIEW that significantly improves the efficiency and eliminates the data volume difficulties there by reducing the product development time while providing a higher level of simulation results visualization.
Technical Paper

Optimization of Vehicle Air Intake System and Air Charge Temperature for Better Engine Performance and Fuel Economy

2016-04-05
2016-01-0206
An Air intake system (AIS) is a duct system which leads the airflow going into the internal combustion engine. Combustion requires oxygen, and the more oxygen is provided into the combustion process the more power it will produce. The lower the air temperature, the higher its density, and hence there is more oxygen in a unit volume. The quality of air entering engine can be measured with the air temperature. AIS design and routing influence the air charge temperature (ACT) at intake manifold runners and ACT is normally measured at AIS throttle body in reality. Higher ACT lead to inefficient combustion and can lead to spark retard. Optimization of AIS designs and reduction of ACT can improve engine performance and vehicle fuel economy. High ACT can be a result of two different phenomena: Recirculation - Hot air from the underhood environment ingested into the dirty side of the air intake system.
Journal Article

Optical Engine Operation to Attain Piston Temperatures Representative of Metal Engine Conditions

2017-03-28
2017-01-0619
Piston temperature plays a major role in determining details of fuel spray vaporization, fuel film deposition and the resulting combustion in direct-injection engines. Due to different heat transfer properties that occur in optical and all-metal engines, it becomes an inevitable requirement to verify the piston temperatures in both engine configurations before carrying out optical engine studies. A novel Spot Infrared-based Temperature (SIR-T) technique was developed to measure the piston window temperature in an optical engine. Chromium spots of 200 nm thickness were vacuum-arc deposited at different locations on a sapphire window. An infrared (IR) camera was used to record the intensity of radiation emitted by the deposited spots. From a set of calibration experiments, a relation was established between the IR camera measurements of these spots and the surface temperature measured by a thermocouple.
Journal Article

Model-Based Control-Oriented Combustion Phasing Feedback for Fast CA50 Estimation

2015-04-14
2015-01-0868
The highly transient operational nature of passenger car engines makes cylinder pressure based feedback control of combustion phasing difficult. The problem is further complicated by cycle-to-cycle combustion variation. A method for fast and accurate differentiation of normal combustion variations and true changes in combustion phasing is addressed in this research. The proposed method combines the results of a feed forward combustion phasing prediction model and “noisy” measurements from cylinder pressure using an iterative estimation technique. A modified version of an Extended Kalman Filter (EKF) is applied to calculate optimal estimation gain according to the stochastic properties of the combustion phasing measurement at the corresponding engine operating condition. Methods to improve steady state CA50 estimation performance and adaptation to errors are further discussed in this research.
Technical Paper

Measurement of Aluminum Edge Stretching Limit Using 3D Digital Image Correlation

2015-04-14
2015-01-0594
This paper introduces an industrial application of digital image correlation technique on the measurement of aluminum edge stretching limit. In this study, notch-shape aluminum coupons with three different pre-strain conditions are tested. The edge stretching is proceeded by standard MTS machine. A dual-camera 3D Digital Image Correlation (DIC) system is used for the full field measurement of strain distribution in the thickness direction. Selected air brush is utilized to form a random distributed speckle pattern on the edge of sheet metal. A pair of special optical lens systems are used to observe the small measurement edge area. From the test results, it demonstrate that refer to the notched coupon thickness, pre-tension does not affect the fracture limit; refer to the virgin sheet thickness, the average edge stretch thinning limits show a consistent increasing trend as the pre-stretch strain increased.
Technical Paper

Integration of Sensitivity Analysis and Design for Six Sigma (DFSS) Methodology into Transient Thermal Analysis

2020-04-14
2020-01-1389
In this paper we present an integrated approach which combines analysis of the effect of simultaneous variations in model input parameters on component or system temperatures. The sensitivity analysis can be conducted by varying model input parameters using specific values that may be of interest to the user. The alternative approach is to use a structured set of parameters generated in the form of a DFSS DOE matrix. The matrix represents a combination of simulation conditions which combine the control factors (CF) and noise factors. CF’s are the design parameters that the engineer can modify to achieve a robust design. Noise factors include parameters that are outside the control of the design engineer. In automotive thermal management, noise factors include changes in ambient temperature, exhaust gas temperatures or aging of exhaust system or heat shields for example.
Technical Paper

Integrating a Proactive Quality Control Concept into Machining Operation of a Crankshaft Manufacturing Process

2019-04-02
2019-01-0507
Competition in the manufacturing industry is ever increasingly intense. Manufacturing organizations that want to grow and prosper must embrace a discipline of constant improvement. Their engineering departments are tasked with improving existing manufacturing processes in terms of quality and throughput, which is vital to competing on a global scale. Manufacturers strive to utilize technologies to extract efficiencies from their existing processes. Reducing scrap and rework is the paramount goal in increasing a processes’ efficiency. The foundation of this study is to analyze a production line to determine the quality status throughout the manufacturing process. The intention is to react to process instability before the production becomes non-compliant (scrap/rework) which will significantly improve productivity.
Journal Article

Input Adaptation for Control Oriented Physics-Based SI Engine Combustion Models Based on Cylinder Pressure Feedback

2015-04-14
2015-01-0877
As engines are equipped with an increased number of control actuators to meet fuel economy targets, they become more difficult to control and calibrate. The additional complexity created by a larger number of control actuators motivates the use of physics-based control strategies to reduce calibration time and complexity. Combustion phasing, as one of the most important engine combustion metrics, has a significant influence on engine efficiency, emissions, vibration and durability. To realize physics-based engine combustion phasing control, an accurate prediction model is required. This research introduces physics-based control-oriented laminar flame speed and turbulence intensity models that can be used in a quasi-dimensional turbulent entrainment combustion model. The influence of laminar flame speed and turbulence intensity on predicted mass fraction burned (MFB) profile during combustion is analyzed.
Technical Paper

Impact of CO2 Dilution on Ignition Delay Times of Full Blend Gasolines in a Rapid Compression Machine

2021-09-21
2021-01-1199
Autoignition delay times of two full blend gasoline fuels (high and low RON) were explored in a rapid compression machine. CO2 dilution by mass was introduced at 0%, 15%, and 30% levels with the O2:N2 mole ratio fixed at 1:3.76. This dilution strategy is used to represent exhaust gas recirculation (EGR) substitution in spark ignition (SI) engines by using CO2 as a surrogate for major EGR constituents(N2, CO2, H2O). Experiments were conducted over the temperature range of 650K-900K and at 10 bar and 20 bar compressed pressure conditions for equivalence ratios of (Φ =) 0.6-1.3. The full blend fuels were admitted directly into the combustion chamber for mixture preparation using the direct test chamber (DTC) approach. CO2 addition retarded the autoignition times for the fuels studied here. The retarding effect of the CO2 dilution was more pronounced in the NTC region when compared to the lower and higher temperature range.
Technical Paper

HVAC Noise Prediction Using Lighthill Wave Method

2023-05-08
2023-01-1125
Automotive Heating Ventilation and Air Conditioning (HVAC) system is essential in providing the thermal comfort to the cabin occupants. The HVAC noise which is typically not the main noise source in IC engine vehicles, is considered to be one of the dominant sources inside the electric vehicle cabin. As air is delivered through ducts and registers into the cabin, it will create an air-rush/broadband noise and in addition to that, any sharp edges or gaps in flow path can generate monotone/tonal noise. Noise emanating from the HVAC system can be reduced by optimizing the airflow path using virtual tools during the development stage. This paper mainly focuses on predicting the noise from the HVAC ducts and registers. In this study, noise simulations were carried-out with ducts and registers. A Finite Volume Method (FVM) based 3-dimensional (3D) Computational Fluid Dynamics (CFD) solver was used for flow as well as acoustic simulations.
Technical Paper

Evaluating Major Parasitic Power Losses in IC Engines

2016-04-05
2016-01-0489
The mathematical models that predict friction losses for an internal combustion (IC) engine are described in this paper. These models are based on a combination of fundamental physics and empirical results. These include predictions of losses arising from friction and viscous fluid motion associated with the relative movement of solid surfaces within a piston assembly, the cranktrain, and valvetrain components. The engine friction losses are defined in the context of the geometries of the particular components within an IC engine. Details of these formulations are given, including novel geometry-related coefficients. Different regimes of lubricated friction are considered. In order to establish the model fidelity and robust solution methodology, the mathematical models are validated against engine friction tests. Utilization of these models enables practical solutions to the development of new low friction IC engines that leads to improved engine mechanical efficiency and fuel economy.
Technical Paper

Equivalent Damping Added by Sound Package

2020-04-14
2020-01-1397
In Automotive and Aerospace industries, sound package has an important role to control vehicle noise in order to improve passenger comfort and reduce environmental noise pollution. The most known approaches used to model the sound package are the Transfer Matrix Method (TMM) combined with Statistical Energy Analysis (SEA). The Transfer Matrix Method based approach is extensively used and well-validated for predicting the transmission loss and other vibro-acoustic indicators of multi-layer structures. However, to the best of our knowledge, the equivalent damping due to the multilayer has not been addressed yet in the literature, and it's a novel approach. In this paper, simplified formulations using TMM to compute the equivalent damping will be recalled, and an experimental study will be conducted to assess the add-on damping by sound package for different configurations.
Technical Paper

Enhanced Windshield CAE NVH Model for Interior Cabin Noise

2020-04-14
2020-01-1100
This paper describes a reliable CAE methodology to model the linear vibratory behavior of windshields. The windshield is an important component in vehicle NVH performance. It plays an integral role in interior cabin noise. The windshield acts as a large panel typically oriented near vertical at the front of vehicle’s acoustic cavity, hence modeling it accurately is essential to have a reliable prediction of cabin interior noise. The challenge to model the windshield accurately rises from the structural composition of different types of windshields. For automotive applications, windshields come in several structural compositions today. In this paper, we will discuss two types of windshield glass used primarily by automotive manufacturers. First type is the typical laminated glass with polyvinyl butyral (PVB) layer and second type is the acoustic glass with PVB and vinyl layers. Acoustic glass improves acoustic characteristics of the glass in a frequency range of ~ 1200 Hz to ~4000 Hz.
Technical Paper

Effects of Domain Boundary Conditions on the CFD Prediction of Flow over an Isolated Tire Model

2021-04-06
2021-01-0961
Tire modeling has been an area of major research in automotive industries as the tires cause approximately 25% of vehicle drag. With the fast-paced growth of computational resources, Computational Fluid Dynamics (CFD) has evolved as an effective tool for aerodynamic design and development in the automotive industry. One of the main challenges in the simulation of the aerodynamics of tires is the lack of a detailed and accurate experimental setup with which to correlate. In this study, the focus is on the prediction of the aerodynamics associated with an isolated rotating Formula 1 tire and brake assembly. Literature has indicated differing mechanisms explaining the dominant features such as the wake structures and unsteadiness. Limited work has been published on the aerodynamics of a realistic tire geometry with specific emphasis on advanced turbulence closures such as the Detached Eddy Simulation (DES).
Technical Paper

EGR Distribution in an Intake Manifold: Analysis, Dynamometer Correlation and Prediction

2020-04-14
2020-01-0840
Every passing year automotive engineers are challenged to attain higher fuel economy and improved emission targets. One widely used approach is to use Cooled Exhaust Gas Recirculation (CEGR) to meet these objectives. Apart from reducing emissions and improving fuel economy, CEGR also plays a significant role in knock mitigation in spark ignited gasoline engines. Generally, CEGR is introduced into the intake manifold in SI gasoline engine. Even though the benefits of using CEGR are significant, they can be easily negated by the uneven CEGR flow distribution between the cylinders, which can result in combustion instability. This paper describes the application of co-simulation between one and three dimensional tools to accurately predict the distribution of CEGR to the cylinders and the effect of its distribution on engine performance.
X