Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

“Build Your Hybrid” - A Novel Approach to Test Various Hybrid Powertrain Concepts

2023-04-11
2023-01-0546
Powertrain electrification is becoming increasingly common in the transportation sector to address the challenges of global warming and deteriorating air quality. This paper introduces a novel “Build Your Hybrid” approach to experience and test various hybrid powertrain concepts. This approach is applied to the light commercial vehicles (LCV) segment due to the attractive combination of a Diesel engine and a partly electrified powertrain. For this purpose, a demonstrator vehicle has been set up with a flexible P02 hybrid topology and a prototype Hybrid Control Unit (HCU). Based on user input, the HCU software modifies the control functions and simulation models to emulate different sub-topologies and levels of hybridization in the demonstrator vehicle. Three powertrain concepts are considered for LCVs: HV P2, 48V P2 and 48V P0 hybrid. Dedicated hybrid control strategies are developed to take full advantage of the synergies of the electrical system and reduce CO2 and NOx emissions.
Technical Paper

Virtual Set-up of a Racing Engine for the Optimization of Lap Performance through a Comprehensive Engine-Vehicle-Driver Model

2011-09-11
2011-24-0141
In Motorsports the understanding of the real engine performance within a complete circuit lap is a crucial topic. On the basis of the telemetry data the engineers are able to monitor this performance and try to adapt the engine to the vehicle's and race track's characteristics and driver's needs. However, quite often the telemetry is the sole analysis instrument for the Engine-Vehicle-Driver (EVD) system and it has no prediction capability. The engine optimization for best lap-time or best fuel economy is therefore a topic which is not trivial to solve, without the aid of suitable, reliable and predictive engineering tools. A complete EVD model was therefore built in a GT-SUITE™ environment for a Motorsport racing car (STCC-VW-Scirocco) equipped with a Compressed Natural Gas (CNG) turbocharged S.I. engine and calibrated on the basis of telemetry and test bench data.
Technical Paper

Virtual Investigation of Real Fuels by Means of 3D-CFD Engine Simulations

2019-09-09
2019-24-0090
The reduction of both harmful emissions (CO, HC, NOx, etc.) and gases responsible for greenhouse effects (especially CO2) are mandatory aspects to be considered in the development process of any kind of propulsion concept. Focusing on ICEs, the main development topics are today not only the reduction of harmful emissions, increase of thermodynamic efficiency, etc. but also the decarbonization of fuels which offers the highest potential for the reduction of CO2 emissions. Accordingly, the development of future ICEs will be closely linked to the development of CO2 neutral fuels (e.g. biofuels and e-fuels) as they will be part of a common development process. This implies an increase in development complexity, which needs the support of engine simulations. In this work, the virtual modeling of real fuel behavior is addressed to improve current simulation capabilities in studying how a specific composition can affect the engine performance.
Technical Paper

Virtual Development of a Single-Cylinder Engine for High Efficiency by the Adoption of eFuels, Methanol, Pre-Chamber and Millerization

2022-06-14
2022-37-0018
The new CO2 and emissions limits imposed to European manufacturers require the adoption of different innovative solutions, such as the use of potentially CO2-neutral synthetic fuels alongside a tailored development of the internal combustion engine, as an excellent solution to accompany the hybridization of vehicles. Dr.Ing. h.c. F. Porsche AG and FKFS, already partners for the development of engines with eFuels, propose a new study carried out on a research engine, investigating the combination of Porsche synthetic gasoline (POSYN) with an engine with millerization and passive pre-chamber. The use of CO2-neutral fuels allow for an immediate reduction in CO2 emissions from all cars already on the market, particularly since Porsche is one of the manufacturers whose cars remain in use for the longest time. The data collected on a single-cylinder engine test bench, for different fuels, with conventional spark plug are used as input for the calibration of 3D-CFD simulations.
Technical Paper

Virtual Development of Injector Spray Targeting by Coupling 3D-CFD Simulations with Optical Investigations

2020-04-14
2020-01-1157
Further improvements of internal combustion engines to reduce fuel consumption and to face future legislation constraints are strictly related to the study of mixture formation. The reason for that is the desire to supply the engine with homogeneous charge, towards the direction of a global stoichiometric blend in the combustion chamber. Fuel evaporation and thus mixture quality mostly depend on injector atomization features and charge motion within the cylinder. 3D-CFD simulations offer great potential to study not only injector atomization quality but also the evaporation behavior. Nevertheless coupling optical measurements and simulations for injector analysis is an open discussion because of the large number of influencing parameters and interactions affecting the fuel injection’s reproducibility. For this purpose, detailed numerical investigations are used to describe the injection phenomena.
Journal Article

Two-Stage Ignition Occurrence in the End Gas and Modeling Its Influence on Engine Knock

2017-09-04
2017-24-0001
The most significant operation limit prohibiting the further reduction of the CO2 emissions of gasoline engines is the occurrence of knock. Thus, being able to predict the incidence of this phenomenon is of vital importance for the engine process simulation - a tool widely used in the engine development. Common knock models in the 0D/1D simulation are based on the calculation of a pre-reaction state of the unburnt mixture (also called knock integral), which is a simplified approach for modeling the progress of the chemical reactions in the end gas where knock occurs. Simulations of thousands of knocking single working cycles with a model representing the Entrainment model’s unburnt zone were performed using a detailed chemical reaction mechanism. The investigations showed that, at specific boundary conditions, the auto-ignition of the unburnt mixture resulting in knock happens in two stages.
Technical Paper

Traceability E-Fuels 2035

2024-07-02
2024-01-3022
EU legislation provides for only local CO2 emission-free vehicles to be allowed in individual passenger transport by 2035. In addition, the directive provides for fuels from renewable sources, i.e. defossilised fuels. This development leads to three possible energy sources or forms of energy for use in individual transport. The first possibility is charging with electricity generated from renewable sources, the second possibility is hydrogen generated from renewable sources or blue production path. The third possibility is the use of renewable fuels, also called e-fuels. These fuels are produced from atmospheric CO2 and renewable hydrogen. Possible processes for this are, for example, methanol or Fischer-Tropsch synthesis. The production of these fuels is very energy-intensive and large amounts of renewable electricity are needed.
Journal Article

Tomographic Particle-Image Velocimetry Analysis of In-Cylinder Flows

2015-06-01
2015-01-9042
New combustion processes require an understanding of the highly three-dimensional flow field to effectively decrease fuel consumption and pollutant emission. Due to the complex spatial character of the flow the knowledge of the development of the flow in an extended volume is necessary. Previous investigations were able to visualize the discrete three-dimensional flow field through multi-plane stereoscopic PIV. In this study, cycle resolved tomographic particle-image velocimetry measurement have been performed to obtain a fully resolved representation of the three-dimensional flow structures at each instant. The analysis is based on the measurements at 80°, 160°, and 240° after top dead center(atdc) such that the velocity distributions at the intake, the end of the intake, and the compression stroke at an engine speed of 1,500 rpm are discussed in detail.
Technical Paper

Thermodynamic Influences of the Top Land Volume on the Late Combustion Phase - A New Research Approach

2021-04-06
2021-01-0468
As the late combustion phase in SI engines is of high importance for a further reduction of fuel consumption and especially emissions, the impacts of unburnt mass, located in a small volume with a relatively large surface near the wall and in the top land volume, is of high relevance throughout the range of operation. To investigate and quantify the respective interactions, a state of the art Mercedes-Benz single cylinder research SI-engine was equipped with extensive measurement technology. To detect the axial and radial temperature distribution, several surface thermocouples were applied in two layers around the top land volume. As an additional reference, multiple surface thermocouples in the cylinder head complement the highly dynamic temperature measurements in the boundary zones of the combustion chamber.
Technical Paper

Thermodynamic Analysis and Benchmark of Various Gasoline Combustion Concepts

2006-04-03
2006-01-0231
Novel Combustion technologies and strategies show high potential in reducing the fuel consumption of gasoline spark ignition (SI) engines. In this paper, a comparison between various gasoline combustion concepts at two representative engine operating points is shown. Advantages of the combustion concepts are analyzed using thermodynamic split of losses method. In this paper, a tool for thermodynamic assessment (Split of Losses) of conventional and new operating strategies of SI engine and its derivatives is used. Technologies, like variable valve actuation and/or gasoline direct injection, allow new strategies to run the SI engine unthrottled with early inlet valve closing (SI-VVA) combined with high EGR, charge stratification (SI-STRAT) and controlled auto ignition (CAI), also known as gasoline homogeneous charge compression ignition (HCCI). These diverse combustion concepts show thermodynamic gains that stem from several, often different sources.
Journal Article

The Virtual Engine Development for Enhancing the Compression Ratio of DISI-Engines Combining Water Injection, Turbulence Increase and Miller Strategy

2020-06-30
2020-37-0010
The increase in efficiency is the focus of current engine development by adopting different technologies. One limiting factor for the rise of SI-engine efficiency is the onset of knock, which can be mitigated by improving the combustion process. HCCI/SACI represent sophisticated combustion techniques that investigate the employment of pre-chamber with lean combustion, but the effective use of them in a wide range of the engine map, by fulfilling at the same time the need of fast load control are still limiting their adoption for series engine. For these reasons, the technologies for improving the characteristics of a standard combustion process are still largely investigated. Among these, water injection, in combination with the Miller cycle, offers the possibility to increase the knock resistance, which in turn enables the rise of the engine geometric compression ratio.
Technical Paper

The Robert Bosch In-Line Pump for Diesel Engines, Type MW, Design, Application and Further Development

1979-02-01
790901
The range of Robert Bosch in-line pumps is designed for engines with cylinder outputs of up to 200 kW. Within this family of pumps the MW pump is used in small IDI engines and medium-sized DI engines with cylinder outputs in the region of 30 kW. More stringent exhaust emission legislation and the need to ensure optimum fuel economy call for efficient fuel-injection systems for diesel engines. In both of its designs the new MW pump meets these more exacting requirements and forms the contribution of Robert Bosch GmbH toward developing advanced diesel engines.
Technical Paper

The Impact of a Combustion Chamber Optimization on the Mixture Formation and Combustion in a CNG-DI Engine in Stratified Operation

2017-03-28
2017-01-0779
A previous study by the authors has shown an efficiency benefit of up to Δηi = 10 % for stratified operation of a high pressure natural gas direct injection (DI) spark ignition (SI) engine compared to the homogeneous stoichiometric operation with port fuel injection (PFI). While best efficiencies appeared at extremely lean operation at λ = 3.2, minimum HC emissions were found at λ = 2. The increasing HC emissions and narrow ignition time frames in the extremely lean stratified operation have given the need for a detailed analysis. To further investigate the mixture formation and flame propagation und these conditions, an optically accessible single-cylinder engine was used. The mixture formation and the flame luminosity have been investigated in two perpendicular planes inside the combustion chamber.
Technical Paper

The Challenge of Precise Characterizing the Specific Large-Span Flows in Urea Dosing Systems for NOx Reduction

2008-04-14
2008-01-1028
The reduction of nitrous oxides in the exhaust gases of internal combustion engines using a urea water solution is gaining more and more importance. While maintaining the future exhaust gas emission regulations, like the Euro 6 for passenger cars and the Euro 5 for commercial vehicles, urea dosing allows the engine management to be modified to improve fuel economy as well. The system manufacturer Robert Bosch has started early to develop the necessary dosing systems for the urea water solution. More than 300.000 Units have been delivered in 2007 for heavy duty applications. Typical dosing quantities for those systems are in the range of 0.01 l/h for passenger car systems and up to 10 l/h for commercial vehicles. During the first years of development and application of urea dosing systems, instantaneous flow measuring devices were used, which were not operating fully satisfactory.
Technical Paper

The Application of E-Fuel Oxymethylene Ether OME1 in a Virtual Heavy-Duty Diesel Engine for Ultra-Low Emissions

2020-04-14
2020-01-0349
For long haul transport, diesel engine due to its low fuel consumption and low operating costs will remain dominant over a long term. In order to achieve CO2 neutrality, the use of electricity-based, synthetic fuels (e-fuels) provides a solution. Especially the group of oxymethylene ethers (OME) is given much attention because of its soot-free combustion. However, the new fuel properties and the changed combustion characteristics place new demands on engine design. Meanwhile, the use of new fuels also creates new degrees of freedom to operate diesel engines. In this work, the application of dimethoxymethane (OME1) is investigated by means of 1D simulation at three operating points in a truck diesel engine. The subsystems of fuel injection, air path and exhaust gas are sequentially adjusted for the purpose of low emissions, especially for low nitrogen oxides (NOx).
Technical Paper

Tailor-Made Fuels: The Potential of Oxygen Content in Fuels for Advanced Diesel Combustion Systems

2009-11-02
2009-01-2765
Fuels derived from biomass will most likely contain oxygen due to the high amount of hydrogen needed to remove oxygen in the production process. Today, alcohol fuels (e. g. ethanol) are well understood for spark ignition engines. The Institute for Combustion Engines at RWTH Aachen University carried out a fuel investigation program to explore the potential of alcohol fuels as candidates for future compression ignition engines to reduce engine-out emissions while maintaining engine efficiency and an acceptable noise level. The soot formation and oxidation process when using alcohol fuels in diesel engines is not yet sufficiently understood. Depending on the chain length, alcohol fuels vary in cetane number and boiling temperature. Decanol possesses a diesel-like cetane number and a boiling point in the range of the diesel boiling curve. Thus, decanol was selected as an alcohol representative to investigate the influence of the oxygen content of an alcohol on the combustion performance.
Technical Paper

Study on Boosted Direct Injection SI Combustion with Ethanol Blends and the Influence on the Ignition System

2011-10-04
2011-36-0196
The stricter worldwide emission legislation and growing demands for lower fuel consumption and CO2-emission require for significant efforts to improve combustion efficiency while satisfying the emission quality demands. Ethanol fuel combined with boosting on direct injection gasoline engines provides a particularly promising and, at the same time, a challenging approach. Brazil is one of the main Ethanol fuel markets with its E24 and E100 fuel availability, which covers a large volume of the national needs. Additionally, worldwide Ethanol availability is becoming more and more important, e.g., in North America and Europe. Considering the future flex-fuel engine market with growing potentials identified on downsized spark ignition engines, it becomes necessary to investigate the synergies and challenges of Ethanol boosted operation. Main topic of the present work focuses on the operation of Ethanol blends up to E100 at high loads up to 30 bar imep.
Journal Article

Start/Stop Strategies for Two-Wheelers in the Emerging Markets

2013-10-15
2013-32-9125
Fuel economy of two-wheelers is an important factor influencing the purchasing psychology of the consumer within the emerging markets. Additionally, air pollution being a major environmental topic, there is a rising concern about vehicle emissions, especially in the big cities and their metropolitan areas. Potentially, the relatively expensive engine management systems are providing more features and value in comparison to the carburettor counterpart. The combustion system analysis is carried out on a 125 cm3 motorcycle engine and the subsequent numerical simulation comparing the carburettor and the Electronic (Port) Fuel Injection which provides a basis to establish the fuel consumption benefit for the electronic injection systems [1].
Technical Paper

Spray Formation of High Pressure Swirl Gasoline Injectors Investigated by Two-Dimensional Mie and LIEF Techniques

1999-03-01
1999-01-0498
Two-dimensional Mie and LIEF techniques were applied to investigate the spray formation of a high pressure gasoline swirl injector in a constant volume chamber. The results obtained provide information on the propagation of liquid fuel and fuel vapor for different fuel pressures and ambient conditions. Spray parameters like tip penetration, cone angles and two new defined parameters describing the radial fuel distribution were used to quantify the fuel distributions measured. Simultaneous detection of liquid and vapor fuel was applied to study the influence of ambient temperature, injector temperature and ambient pressure on the evaporating spray.
Technical Paper

Simulation of the Post-Oxidation in Turbo Charged SI-DI-Engines

2011-04-12
2011-01-0373
Turbocharged SI-DI-engines in combination with a reduction of engine displacement (“Downsizing”) offer the possibility to remarkably reduce the overall fuel consumption. In charged mode it is possible to scavenge fresh unburnt air into the exhaust system if a positive slope during the overlap phase of the gas exchange occurs. The matching of the turbo system in SI-engines always causes a trade-off between low-end torque and high power output. The higher mass flow at low engine speeds of an engine using scavenging allows a partial solution of this trade-off. Thus, higher downsizing grades and fuel consumption reduction potential can be obtained. Through scavenging the global fuel to air ratio deviates from the local in-cylinder fuel to air ratio. It is possible to use a rich in-cylinder fuel to air ratio, whereas the global fuel to air ratio remains stochiometrical. This could be very beneficial to reduce the effect of catalytic aging on the one hand and engine knock on the other hand.
X