Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Performance Characteristics of a High Intensity Cryogenic Flow Boiler

2003-07-07
2003-01-2507
Hamilton Sundstrand has been working on the development of a new cryogenic flow boiler based on its patented compact, high-intensity cooler (CHIC) technology intended to provide low weight and volume and overcome freezing problems associated with cryogen use in EVA spacesuit cooling. Tests of the prototype device resulting from that effort have now been completed. The test data demonstrate that the design is extremely resistant to freezing the heat transport fluid as anticipated. Highly effective heat transfer is achieved in a compact device combining the functions of several conventional heat exchangers. This novel heat exchanger, a “normal flow” layered impingement arrangement should provide a very compact solution to any heat transfer applications where the cold fluid operates below the warm fluid's freezing point. Test results are generally consistent with design analyses for the prototype.
Technical Paper

Development of a Miniaturized High Intensity Cryogenic Flow Boiler

2002-07-15
2002-01-2408
An extremely compact heat exchanger is being developed which can boil cryogenic fluids with a liquid heat source at temperatures close to its freezing point. Freezing of the heat source fluid, e.g. water is precluded by the normal flow arrangement. Boiling and superheating of the cryogen occurs as the fluid approaches the heat source in a stack of bonded jet-array laminations. This heat exchanger technology is important in many applications where the storage of fluids at cryogenic temperatures offers substantial advantages in terms of system weight and volume. Often, as in several advanced portable life support system concepts, the advantages include the use of the cryogen as a heat sink in system thermal management. Realizing this benefit and safely conditioning the stored fluid for use requires effective heat transfer between the cryogen and a secondary heat transport fluid.
Technical Paper

Chameleon Suit – A Different Paradigm for Future EVA Systems

2003-07-07
2003-01-2445
The demands of future NASA exploration and scientific missions in space force the reevaluation of some of the basic assumptions and approaches that underlie current extravehicular activity (EVA) systems. Developing designs that can simultaneously achieve the advanced capabilities and the reductions in system mass and mission expendables targeted by NASA has proven to be a formidable challenge. The constraints of human needs, space environments, and current EVA system architectures demand technical capabilities beyond current expectations to achieve system goals. Under NASA Institute for Advanced Concepts (NIAC) sponsorship, Hamilton Sundstrand has been studying a new system paradigm to achieve the EVA system goals. The Chameleon Suit concept employs an active pressure suit that directly interacts between human systems and space environments.
X