Refine Your Search



Search Results

Technical Paper

Vertical Drop Test of a Narrow-Body Transport Fuselage Section with Overhead Stowage Bins

A 10-foot-long fuselage section from a Boeing 737-100 airplane was dropped from a height of 14 feet generating a final impact velocity of 30 feet per second. The fuselage section was configured to simulate the load density at the maximum takeoff weight condition. The final weight of 8870 pounds included cabin seats, dummy occupants, overhead stowage bins with contents, and cargo compartment luggage. The fuselage section was instrumented with strain gages, accelerometers, and high-speed cameras. The fuselage sustained severe deformation of the cargo compartment. The luggage influenced the manner in which the fuselage crushed, affecting the gravitational (g) forces experienced by the test section. The seat tracks experienced 15 g's vertical deceleration. Although numerous fuselage structural members fractured during the test, a habitable environment was maintained for the occupants, and the impact was considered survivable.
Technical Paper

Usage of MTBF for Exposure Times of Undetected Faults in Safety Assessments

Many of the certification regulations in 14 CFR Part 25 are by design, broad and as such, can be subject to large differences in the interpretation of what constitutes adequate compliance. Advisory Circulars (AC's) were developed for many of the regulations to assist industry, as well as certification personnel, with what is considered an acceptable, but not the only means, of compliance. However, there are many regulations where no advisory material is available. In these cases, the “acceptable means” of compliance can vary to a greater degree among the various aircraft certification offices. This difficulty is aggravated as new applicants and regulatory personnel enter the certification field. Recent discussions and interpretations on the usage of an avionic unit's mean time between failure or MTBF for its detectable faults as the basic repair rate for undetected or latent faults, is a subject area where no significant advisory material exists.
Technical Paper

Transport Airplane Fuselage Section Longitudinal Impact Test

A transport airplane fuselage section with a full complement of cabin seats and anthropomorphic test dummies was longitudinally impact tested at a condition that approached the ultimate strength of the airframe protective shell structure. Airframe structural responses, seat/floor reaction loads, and the interactive effects of secondary impacts between multiple cabin seat rows were investigated. The scope and conduct of the test are presented together with some preliminary analyses of the test results.
Technical Paper

Transferring Experimental Products into Operations the Aviation Weather Technology Transfer Board

The Federal Aviation Administration (FAA) has recognized that there is a need to establish an orderly path to move Research, Engineering & Development (RE&D) aviation weather products into an operational environment. To address this need, FAA’s Air Traffic System Requirements Service (ARS) established the Aviation Weather Technology Transfer (AWTT) Board with the principal mission to manage and accelerate the transfer of RE&D products into operations. The board is comprised of members that cut across FAA services and includes representation from the National Weather Service (NWS). The board encourages the development of new aviation weather products that improve the depiction and forecasting of weather events that affect not only the safety of the National Airspace System (NAS) but also the efficiency. This paper describes how the board manages this technology transfer process and how it decides whether a product is acceptable for experimental evaluation or operations.
Technical Paper

Training Solutions from FAA Maintenance Human Factors Research & Development

The FAA Office of Aviation Medicine has developed, delivered, and tested a variety of training systems over the past decade. The systems, their design, and guidance materials are directly transferable to the aviation industry at no cost. This paper describes the many training systems that are available.
Technical Paper

The Impact of Automation on Flight Test

The rapid growth in digital computer technology and display systems has impacted most aerospace disciplines. The designer manufacturer operator and even airplane passengers are all affected by this technology boom. The FAA in its role of certifying new aerospace products is no exception. This paper will emphasize the changing methodology of the FAA certification process with some specific examples of recent flight test programs.
Technical Paper

The FAA Regional/Commuter Aircraft Flight Loads Data Collection Program

As a part of its International Aging Aircraft Research Program, the Federal Aviation Administration is establishing a state-of-the-art Flight Loads Data Collection Program. Data collected in this program will provide the necessary mission profiles and load spectra information to characterize typical fleet service usage for the regional/commuter service life extension program. In addition, these data are applicable for both a safe life fatigue analysis and a damage tolerance fracture mechanics analysis. This paper describes the FAA approach and schedule for instrumenting fleet service aircraft, and the data reduction process.
Technical Paper

The Discrete Address Beacon System in the Air Traffic Control Environment

Many problems exist in meeting the future surveillance and communication needs of air traffic control. Many functions and services are now being developed for eventual implementation beginning after 1977. The operation, role, and impact of the Discrete Address Beacon System in meeting these needs and functions are discussed in this paper.
Technical Paper

The Current and Future Basis for Aircraft Air Pollution Control

The present regulatory tool for assessment of aircraft smoke emission, the Ringelmann Chart, is described; some of the shortcomings associated with its use for aircraft are discussed; research and development efforts to improve on this system are described. The gaseous pollutants, their relative importance in an airport area and research underway or needed is also discussed.
Technical Paper

The Commercial Aviation Alternative Fuels Initiative

This paper describes the recently established Commercial Aviation Alternative Fuel Initiative (CAAFI), including its goals and objectives, as well as presents an alternate fuel roadmap that was originally generated by industry and refined by the CAAFI stakeholders. CAAFI is designed to coordinate the development and commercialization of “drop-in” alternate fuels (i.e. fuels that can directly supplement or replace crude oil derived jet fuels), as well as exploring the long-term potential of other fuel options. The ultimate goal is to ensure an affordable and stable supply of environmentally progressive aviation fuels that will enable continued growth of commercial aviation. This initiative is organized into four sub-groups: Research and Development (R&D), certification, environment, and economics & business. The R&D group seeks to identify promising new drop-in alternate fuels, and to foster coordination of development efforts.
Technical Paper

The Aviation Safety Analysis System (ASAS): An Overview

The Federal Aviation Administration has placed increasing emphasis on modern information systems to achieve safety improvements. The ASAS (Aviation Safety Analysis System) is a comprehensive new system to upgrade significantly the agency's ability to collect process and disseminate safety-related information.
Technical Paper

Small Airplane Vertical Impact Test Program

The crash impact characteristics of commuter category airplanes has recently been established using empirical procedures based on full scale aircraft impact test data for a range of aircraft sizes[1]. To compliment that empirical approach the Federal Aviation Administration (FAA) initiated a full scale commuter category airplane vertical impact test program. Those airplane vertical impact tests were structured to evaluate the airframe's capability to maintain its structural integrity and provide a protective shell for its occupants, to quantify the acceleration impact response characteristics of the airframe, and to evaluate the means necessary to provide occupant pelvic/lumbar column load injury protection up to the limits of survivable impact conditions.
Technical Paper

Simulation's Potential Role in Advanced Aircraft Certification

In view of the fact that future generations of derivative or new aircraft will be faced with problems of increasing operating efficiency, new and more advanced technology will have to be introduced. To this end, the Federal Aviation Administration has been examining the certification question and has concluded that simulation may be increasingly important in the future certification activities. Through a contract with Lockheed Aircraft Company, the FAA will be able to review past use of industrial simulation in connection with certification.
Technical Paper

Requirements, Performance and Integration of Modern Navigation Aids

The need to improve the efficiency and capacity of the Air Traffic Control and Navigation System has placed greater emphasis on the functional integration of subsystems which have been treated independently in the past. This paper presents results of limited test programs designed to explore the relationship of terminal area navigation and the air traffic control system, and to show the benefits of an optimum combination of both functions. The need for further analysis is indicated with respect to carrying out the third generation system design postulated by the DOT Air Traffic Control Advisory Committee. It is concluded that functional integration of ATC and navigation in the terminal area presents the greatest challenge. In other areas, such as enroute, the availability of new, integrated avionics systems provides an expanded operational capability.
Technical Paper

Reactions of Pilots to Warning Systems for Visual Collision Avoidance

The FAA conducted a series of six experiments having application to the development of pilot warning instruments (PWI). The experiments were concerned with the effect of warning rates on pilot performance, pilot response to imminent collision threats, the evaluation of scanning patterns, the value of warning-only, the effect of relative motion on pilot performance, and the effect of PWI display sector size. The results of these experiments offer a variety of useful data in the area of visual collision avoidance.
Technical Paper

Radar Detection of High Concentrations of Ice Particles - Methodology and Preliminary Flight Test Results

High Ice Water Content (HIWC) has been identified as a primary causal factor in numerous engine events over the past two decades. Previous attempts to develop a remote detection process utilizing modern commercial radars have failed to produce reliable results. This paper discusses the reasons for previous failures and describes a new technique that has shown very encouraging accuracy and range performance without the need for any modifications to industry’s current radar design(s). The performance of this new process was evaluated during the joint NASA/FAA HIWC RADAR II Flight Campaign in August of 2018. Results from that evaluation are discussed, along with the potential for commercial application, and development of minimum operational performance standards for future radar products.
Technical Paper

One Engine Inoperative Takeoff Climb Performance of the XV-15 Tilt Rotor

One Engine Inoperative takeoff climb performance of the XV-15 tilt rotor aircraft was analytically determined from level flight data and compared to the proposed powered-lift aircraft criteria. The results of this analysis can be useful in establishing the takeoff profile and highlighting potential certification issues.
Journal Article

Framework for Unmanned Aircraft Systems Safety Risk Management

Although Unmanned Aircraft Systems (UAS) have now for some time been used in segregated airspace where separation from other air traffic can be assured, potential users have interests to deploy UAS in non segregated airspace. Recent technological and operational improvements give reason to believe that UAS safety and performance capabilities are maturing. But the skies can only really open up to UAS when there is an agreed upon UAS safety policy with commonly accepted UAS Safety Risk Management (SRM) processes enabling to show that the risks related to UAS operations in all the different airspace classes can be adequately controlled. The overall objective is to develop a UAS SRM framework, supporting regulators and applicants through provision of detailed guidelines for each SRM step to be conducted, including 1) system description, 2) hazard identification, 3) risk analysis, 4) risk assessment, 5) risk treatment.
Technical Paper

Failure of Aircraft Structural Joints Under Impulse Loading

Numerical simulations indicate that blast loading on aircraft structural joints can impart loading rates in excess of 10 Mlb/sec (ten million pounds per second, Reference 1). Experimental evidence, on the other hand, suggests that mechanical joint failure loads are highly loading rate dependent; for example, the failure load for a dynamically loaded tension joint can double from its static value. This paper discusses the progress and to-date findings of research on the assessment of strength failure of aircraft structural joints subjected to loading rates expected from an internal explosive detonation, and several associated experimental procedures to generate such dynamic loading. This work is conducted at MDC and at the University of Dayton Research Institute (UDRI) in support of the FAA Aircraft Hardening Program.
Technical Paper

FAA's Trend Analysis Data System

The Federal Aviation Administration is charged with the promotion of aviation safety. It is made up of three levels of administration within which are the functional organizations that manage the FAA programs and services. The Flight Standards service, which develops and enforces all regulations affecting aircraft and airmen, is the functional organization directly responsible for promoting aviation safety. This paper describes the Flight Standards aviation safety program.