Refine Your Search


Search Results

Viewing 1 to 15 of 15
Technical Paper

The Influence of Compression Ratio on Indicated Emissions and Fuel Economy Responses to Input Variables for a D.I Diesel Engine Combustion System

The effect of compression ratio on sensitivity to changes in start of injection and air-fuel ratio has been investigated on a single-cylinder DI diesel engine at fixed low and medium speeds and loads. Compression ratio was set to 17.9:1 or 13.7:1 by using pistons with different bowl sizes. Injection timing and air-to-fuel ratio were swept around a nominal map point at which gross IMEP and NOx values were matched for the two compression ratios. It was found that CO, HC and ISFC were higher at low compression ratio, but the soot/NOx trade-off improved and this could be exploited to reduce the fuel economy penalty. Sensitivity to inputs is generally similar, but high compression ratio tended to have steeper response gradients. Reducing compression ratio to 13.7 gave rise to a marked degradation of performance at light load, producing high CO emissions and a fall in combustion efficiency. This could be eased by reducing rail pressure, but the advantage in smoke emission was lost.
Journal Article

The Effect of Piston Cooling Jets on Diesel Engine Piston Temperatures, Emissions and Fuel Consumption

A Ford 2.4-liter 115PS light-duty diesel engine was modified to allow solenoid control of the oil feed to the piston cooling jets, enabling these to be switched on or off on demand. The influence of the jets on piston temperatures, engine thermal state, gaseous emissions and fuel economy has been investigated. With the jets switched off, piston temperatures were measured to be between 23 and 88°C higher. Across a range of speed-load points, switching off the jets increased engine-out emissions of NOx typically by 3%, and reduced emissions of CO by 5-10%. Changes in HC were of the same order and were reductions at most conditions. Fuel consumption increased at low-speed, high-load conditions and decreased at high-speed, low-load conditions. Applying the results to the NEDC drive cycle suggests active on/off control of the jets could reduce engine-out emissions of CO by 6%, at the expense of a 1% increase in NOx, compared to the case when the jets are on continuously.
Journal Article

Research on Validation Metrics for Multiple Dynamic Response Comparison under Uncertainty

Computer programs and models are playing an increasing role in simulating vehicle crashworthiness, dynamic, and fuel efficiency. To maximize the effectiveness of these models, the validity and predictive capabilities of these models need to be assessed quantitatively. For a successful implementation of Computer Aided Engineering (CAE) models as an integrated part of the current vehicle development process, it is necessary to develop objective validation metric that has the desirable metric properties to quantify the discrepancy between multiple tests and simulation results. However, most of the outputs of dynamic systems are multiple functional responses, such as time history series. This calls for the development of an objective metric that can evaluate the differences of the multiple time histories as well as the key features under uncertainty.
Technical Paper

Recent Developments in Penetration Resistance of Windshield Glass

A twofold improvement in penetration resistance of laminated safety glass for use in vehicle windshields has been achieved. A new test procedure has been established which will provide better correlation of test conditions to accident conditions than present tests do. Present windshield material and the new safety glazings are compared.
Technical Paper

Predicted Paths of Soot Particles in the Cylinders of a Direct Injection Diesel Engine

Soot formation and distribution inside the cylinder of a light-duty direct injection diesel engine, have been predicted using Kiva-3v CFD software. Pathlines of soot particles traced from specific in-cylinder locations and crank angle instants have been explored using the results for cylinder charge motion predicted by the Kiva-3v code. Pathlines are determined assuming soot particles are massless and follow charge motion. Coagulation and agglomeration have not been taken into account. High rates of soot formation dominate during and just after the injection. Oxidation becomes dominant after the injection has terminated and throughout the power stroke. Computed soot pathlines show that soot particles formed just below the fuel spray axis during the early injection period are more likely to travel to the cylinder wall boundary layer. Soot particles above the fuel spray have lesser tendency to be conveyed to the cylinder wall.
Technical Paper

Establishing Localized Fire Test Methods and Progressing Safety Standards for FCVs and Hydrogen Vehicles

The SAE Fuel Cell Vehicle (FCV) Safety Working Group has been addressing FCV safety for over 11 years. In the past couple of years, significant attention has been directed toward a revision to the standard for vehicular hydrogen systems, SAE J2579(1). In addition to streamlining test methodologies for verification of Compressed Hydrogen Storage Systems (CHSSs) as discussed last year,(2) the working group has been considering the effect of vehicle fires, with the major focus on a small or localized fire that could damage the container in the CHSS and allow a burst before the Pressure Relief Device (PRD) can activate and safely vent the compressed hydrogen stored from the container.
Technical Paper

Effectiveness of Polyurethane Foam in Energy Absorbing Structures

Future vehicle safety, performance and fuel economy objectives make the development of new materials, concepts and methods of crash energy management desirable. The technique of foam filling structural rails for increased energy absorption was investigated as one such concept. A fractional factorial test program was established to evaluate the weight effectiveness of polyurethane foam as an energy absorber and stabilizer. The experiment provided the quantitative effects of design parameter, varability of results and statistical significance of each parameter with regard to crash characteristics. High density foam was found to be weight effective as a structural reinforcement, but not as an energy absorber. Medium density foam improves the energy absorption of a section. Equivalent energy, however, can be absorbed more weight effectively by changing the metal thickness or the section size.
Journal Article

Development of a Standard Spin Loss Test Procedure for FWD-Based Power Transfer Units

As vehicle fuel economy continues to grow in importance, the ability to accurately measure the level of efficiency on all driveline components is required. A standardized test procedure enables manufacturers and suppliers to measure component losses consistently and provides data to make comparisons. In addition, the procedure offers a reliable process to assess enablers for efficiency improvements. Previous published studies have outlined the development of a comprehensive test procedure to measure transfer case speed-dependent parasitic losses at key speed, load, and environmental conditions. This paper will take the same basic approach for the Power Transfer Units (PTUs) used on Front Wheel Drive (FWD) based All Wheel Drive (AWD) vehicles. Factors included in the assessment include single and multi-stage PTUs, fluid levels, break-in process, and temperature effects.
Technical Paper

Developing the AC17 Efficiency Test for Mobile Air Conditioners

Chrysler, Ford, General Motors, the U.S. Environmental Protection Agency (EPA) and the California Air Resources Board (CARB) have collaborated over the past two years to develop an efficiency test for mobile air conditioner (MAC) systems. Because the effect of efficiency differences between different MAC systems and different technologies is relatively small compared to overall vehicle fuel consumption, quantifying these differences has been challenging. The objective of this program was to develop a single dynamic test procedure that is capable of discerning small efficiency differences, and is generally representative of mobile air conditioner usage in the United States. The test was designed to be conducted in existing test facilities, using existing equipment, and within a sufficiently short time to fit standard test facility scheduling. Representative ambient climate conditions for the U.S. were chosen, as well as other test parameters, and a solar load was included.
Technical Paper

Comparative Assessment of Elastio-Viscoplastic Models for Thermal Stress Analysis of Automotive Powertrain Component

In this paper, thermal stress analysis for powertrain component is carried out using two in-house developed elasto-viscoplastic models (i.e. Chaboche model and Sehitoglu model) that are implemented into ABAQUS via its user subroutine UMAT. The model parameters are obtained from isothermal cyclic tests performed on standard samples under various combinations of strain rates and temperatures. Models' validity is verified by comparing to independent non-isothermal tests conducted on similar samples. Both models are applied to the numerical analysis of exhaust manifold subject to temperature cycling as a result of vehicle operation. Due to complexity, only four thermal cycles of heating-up and cooling-down are simulated. Results using the two material models are compared in terms of accuracy and computational efficiency. It is found that the implemented Chaboche model is generally more computationally efficient than Sehitoglu model, though they are almost identical in regard to accuracy.
Technical Paper

Combustion Chamber Effects on Burn Rates in a High Swirl Spark Ignition Engine

Experimental measurements of burn rates have been carried out in a single cylinder homogeneous charge engine. Three different combustion chambers were investigated (75 % and 60 % squish bowl-in-piston chambers and a disk chamber) using a cylinder head with a swirl producing intake port and near central spark location. Data were obtained with each combustion chamber as a function of spark timing, EGR, and load at 1500 RPM. The combustion rate is strongly influenced by chamber shape. The 10-90 % burn durations of the 75 % and 60 % squish chambers are respectively about 40 % and 60 % that of the disk chamber. Chamber configuration had less effect on 0-10 % burn duration. The disk had about 25 % longer 0-10 % burn time than the bowl-in-piston chambers. Modifications to the GESIM model enabled good overall agreement between predictions and experimental data, a rather severe test of the model because the coupling of fluid mechanics, combustion and chamber geometry must be properly modeled.
Technical Paper

Automotive Electronics in the 80’s

This paper discusses the growing use of electronics to provide improved fuel economy and control of engine emissions. The advantages of electronic engine controls are outlined, transducers utilized in a 1980 EEC III CFI application are described, and potential future expansion of electronic engine control is discussed.
Technical Paper

An Electrohydraulic Gas Sampling Valve with Application to Hydrocarbon Emissions Studies

Design and development of an electrohydraulically actuated gas sampling valve is presented for use in auto engine combustion studies. The valve was developed with particular emphasis on sampling within the vicinity of the wall quench layer, requiring minimum leakage rates to avoid sample contamination and flush seating of the valve-stem to valve-seat to avoid perturbations of the wall layer. Response in the range of 0.4 to 1.0 milliseconds is attainable for variable valve lifts measured between 0.01 to 0.30 mm while using a net sealing force of approximately 750N. Gas leakage rates ranged from 0.05% to 1% of the sample mass flow rate when sampling from estimated distances from the wall of 0.3 mm to 0.03 mm, respectively, at a cylinder pressure of 10 bar. The gas sampling valve is presently coupled to a gas chromatograph to measure concentrations of major species components.
Technical Paper

A New Floating-Liner Test Rig Design to Investigate Factors Influencing Piston-Liner Friction

The largest contribution to engine rubbing friction is made by the piston and piston rings running in the cylinder liner. The magnitude and characteristics of the friction behaviour and the influence on these of factors such as surface roughness, piston design and lubricant properties are of keen interest. Investigating presents experimental challenges, including potential problems of uncontrolled build-to-build variability when component changes are made. These are addressed in the design of a new motored piston and floating liner rig. The design constrains transverse movement of a single liner using cantilevered mounts at the top and bottom. The mounts and two high stiffness strain gauged load cells constrain vertical movement. The outputs of the load cells are processed to extract the force contribution associated with friction. The liner, piston and crankshaft parts were taken from a EuroV-compliant, HPCR diesel engine with a swept capacity of 550cc per cylinder.