Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Predicted Paths of Soot Particles in the Cylinders of a Direct Injection Diesel Engine

Soot formation and distribution inside the cylinder of a light-duty direct injection diesel engine, have been predicted using Kiva-3v CFD software. Pathlines of soot particles traced from specific in-cylinder locations and crank angle instants have been explored using the results for cylinder charge motion predicted by the Kiva-3v code. Pathlines are determined assuming soot particles are massless and follow charge motion. Coagulation and agglomeration have not been taken into account. High rates of soot formation dominate during and just after the injection. Oxidation becomes dominant after the injection has terminated and throughout the power stroke. Computed soot pathlines show that soot particles formed just below the fuel spray axis during the early injection period are more likely to travel to the cylinder wall boundary layer. Soot particles above the fuel spray have lesser tendency to be conveyed to the cylinder wall.
Technical Paper

Combustion Chamber Effects on Burn Rates in a High Swirl Spark Ignition Engine

Experimental measurements of burn rates have been carried out in a single cylinder homogeneous charge engine. Three different combustion chambers were investigated (75 % and 60 % squish bowl-in-piston chambers and a disk chamber) using a cylinder head with a swirl producing intake port and near central spark location. Data were obtained with each combustion chamber as a function of spark timing, EGR, and load at 1500 RPM. The combustion rate is strongly influenced by chamber shape. The 10-90 % burn durations of the 75 % and 60 % squish chambers are respectively about 40 % and 60 % that of the disk chamber. Chamber configuration had less effect on 0-10 % burn duration. The disk had about 25 % longer 0-10 % burn time than the bowl-in-piston chambers. Modifications to the GESIM model enabled good overall agreement between predictions and experimental data, a rather severe test of the model because the coupling of fluid mechanics, combustion and chamber geometry must be properly modeled.
Technical Paper

An Electrohydraulic Gas Sampling Valve with Application to Hydrocarbon Emissions Studies

Design and development of an electrohydraulically actuated gas sampling valve is presented for use in auto engine combustion studies. The valve was developed with particular emphasis on sampling within the vicinity of the wall quench layer, requiring minimum leakage rates to avoid sample contamination and flush seating of the valve-stem to valve-seat to avoid perturbations of the wall layer. Response in the range of 0.4 to 1.0 milliseconds is attainable for variable valve lifts measured between 0.01 to 0.30 mm while using a net sealing force of approximately 750N. Gas leakage rates ranged from 0.05% to 1% of the sample mass flow rate when sampling from estimated distances from the wall of 0.3 mm to 0.03 mm, respectively, at a cylinder pressure of 10 bar. The gas sampling valve is presently coupled to a gas chromatograph to measure concentrations of major species components.
Technical Paper

A New Floating-Liner Test Rig Design to Investigate Factors Influencing Piston-Liner Friction

The largest contribution to engine rubbing friction is made by the piston and piston rings running in the cylinder liner. The magnitude and characteristics of the friction behaviour and the influence on these of factors such as surface roughness, piston design and lubricant properties are of keen interest. Investigating presents experimental challenges, including potential problems of uncontrolled build-to-build variability when component changes are made. These are addressed in the design of a new motored piston and floating liner rig. The design constrains transverse movement of a single liner using cantilevered mounts at the top and bottom. The mounts and two high stiffness strain gauged load cells constrain vertical movement. The outputs of the load cells are processed to extract the force contribution associated with friction. The liner, piston and crankshaft parts were taken from a EuroV-compliant, HPCR diesel engine with a swept capacity of 550cc per cylinder.