Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Wear Protection Properties of Flexible Fuel Vehicle (FFV) Lubricants

1993-10-01
932791
A laboratory wear test is used to evaluate the wear protection properties of new and used engine oils formulated for FFV service. Laboratory-blended mixtures of these oils with methanol and water have also been tested. The test consists of a steel ball rotating against three polished cast iron discs. Oil samples are obtained at periodic intervals from a fleet of 3.0L Taurus vehicles operating under controlled go-stop conditions. To account for the effects of fuel dilution, some oils are tested before and after a stripping procedure to eliminate gasoline, methanol and other volatile components. In addition to TAN and TBN measurements, a capillary electrophoresis technique is used to evaluate the formate content in the oils. The results suggest that wear properties of used FFV lubricants change significantly with their degree of usage.
Technical Paper

Friction Reduction in Lubricated Components Through Engine Oil Formulation

1998-10-19
982640
Improvement of engine fuel efficiency through the use of low friction engine oils is a major task in engine lubrication research. This friction reduction can be achieved by improving the rheological characteristics and elastohydrodynamic (EHD) properties of engine oils, and by controlling boundary chemical interactions between oil-based additives and lubricated components in the engine. In order to achieve minimal frictional power loss under all lubrication regimes, engine tribological systems must be designed to effectively use advanced lubricant technology, material and surface modifications. This paper presents results of cooperative research addressing opportunities for minimizing friction through extension of hydrodynamic lubrication regime in lubricated components using various formulation approaches. A set of experimental oils has been evaluated using laboratory test rigs that simulate hydrodynamic, EHD, mixed and boundary lubrication.
X