Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Bending Fatigue Behavior of Carburized Gear Steels: Planetary Gear Test Development and Evaluation

1996-02-01
960978
Little information is available concerning the bending fatigue behavior of helical gears with tall thin teeth and high contact ratios, particularly for planetary pinions which are subjected to fully reversed loading. The most common methods to acquire gear bending fatigue data are either through a four-square recirculating power arrangement or unidirectional single tooth bending experiments on standardized spur gears. There are some advantages to these test methods, but they generally do not represent actual operating conditions of a planetary gear environment. The purpose of this study was to develop a bending fatigue test for planetary pinions in automatic transmissions which would better represent actual operating conditions. The new testing procedure was used to evaluate the bending fatigue behavior of three gear steel/processing combinations. The results from the planetary gear testing is compared with laboratory four-point bending experiments.
Technical Paper

Bending Fatigue Behavior of Carburized Gear Steels: Four-Point Bend Test Development and Evaluation

1996-02-01
960977
The ability to evaluate the bending fatigue behavior of carburized low alloy steels in a laboratory and relate these measurements to performance of high contact ratio helical gears is important to the design and development of transmissions. Typical methods of evaluating bending fatigue performance of carburized gear steels do not directly represent helical planetary gears because they lack the geometric and loading conditions of planetary pinions. The purpose of this study is twofold; 1) development of a lab fatigue test to represent the fatigue performance of planetary pinion gears tested in a dynamometer and 2) evaluation of the influence of alloy content on bending fatigue performance of two steel alloys. The steels under evaluation were modified 8620M and 4615M alloys machined into bend bars with a notch representing a gear root and carburized to a case depth of approximately 0.35 mm (using the same carburizing cycle as the planetary pinion gears).
X