Refine Your Search




Search Results

Technical Paper

Vehicle Sound Package - Art or Science?

Sound package engineering has always been an art developed through experience and much subjective road testing. Because the problem is complex, it is essential to have a logical procedure to achieve the most efficient sound package. The quiet car concept is proposed as a solution. Additionally, a plea is made for relevant automobile-oriented material test procedures to be recognized industry-wide.
Technical Paper

Vehicle Exhaust Particle Size Distributions: A Comparison of Tailpipe and Dilution Tunnel Measurements

This paper explores the extent to which standard dilution tunnel measurements of motor vehicle exhaust particulate matter modify particle number and size. Steady state size distributions made directly at the tailpipe, using an ejector pump, are compared to dilution tunnel measurements for three configurations of transfer hose used to transport exhaust from the vehicle tailpipe to the dilution tunnel. For gasoline vehicles run at a steady 50 - 70 mph, ejector pump and dilution tunnel measurements give consistent results of particle size and number when using an uninsulated stainless steel transfer hose. Both methods show particles in the 10 - 100 nm range at tailpipe concentrations of the order of 104 particles/cm3.
Technical Paper

Vehicle Body Structure Durability Analysis

Due to several indeterminate factors, the assessment of the durability performance of a vehicle body is traditionally accomplished using test methods. An analytical fatigue life prediction method (four-step durability process) that relies mainly on numerical techniques is described in this paper. The four steps comprising this process include the identification of high stress regions, recognizing the critical load types, determining the critical road events and calculation of fatigue life. In addition to utilizing a general purpose finite element analysis software for the application of the Inertia Relief technique and a previously developed fatigue analysis program, two customized programs have been developed to streamline the process into an integrated, user-friendly tool. The process is demonstrated using a full body, finite element model.
Technical Paper

Use of FCRASH in a Door Openability Simulation

During frontal and rear end type collisions, very large forces will be imparted to the passenger compartment by the collapse of either front or rear structures. NCAP tests conducted by NHTSA involve, among other things, a door openability test after barrier impact. This means that the plastic/irreversible deformations of door openings should be kept to a minimum. Thus, the structural members constituting the door opening must operate during frontal and rear impact near the elastic limit of the material. Increasing the size of a structural member, provided the packaging considerations permit it, may prove to be counter productive, since it may lead to premature local buckling and possible collapse of the member. With the current trend towards lighter vehicles, recourse to heavier gages is also counterproductive and therefore a determination of an optimum compartment structure may require a number of design iterations. In this article, FEA is used to simulate front side door behavior.
Technical Paper

TiAl-Based Alloys for Exhaust Valve Applications

The recent development of TiAl-based alloys by the aerospace community has provided an excellent material alternative for hot components in automotive engines. The low density combined with an elevated temperature strength similar to that of Ni-base superalloys make TiAl-based alloys very attractive for exhaust valve applications. Lighter weight valvetrain components improve performance and permit the use of lower valve spring loads which reduce noise and friction and enhance fuel economy. However, difficult fabricability and a perception that TiAl alloys are high cost, low volume aerospace materials must be overcome in order to permit consideration for use in high-volume automotive applications. This paper provides a comparison of properties for several exhaust valve alternative materials. The density of TiAl alloys is lower than Ti alloys with creep and fatigue properties equivalent to IN-751, a current high performance exhaust valve material.
Technical Paper

The Mvma Investigation Into the Complexities of Heavy Truck Splash and Spray Problem

Splash and spray conditions created by tractor-trailer combinations operating on the Federal highway system have been studied and tested for many years with mixed results. Past events are reviewed briefly in this paper. In additional testing during 1983, using new state-of- the-art splash/spray suppressant devices, some encouragement was provided that these devices could work. The 1984 Motor Vehicle Manufacturers Association (MVMA) test program was designed to develop practicable and reliable test procedures to measure effectiveness of splash and spray reduction methods applied to tractor-trailer combination vehicles. Over 40 different combinations of splash/spray suppression devices on five different tractors and three van trailer types were tested. The spray-cloud densities for some 400 test runs were measured by laser transmissometers and also recorded by still photography, motion pictures, and videotape. On-site observers made subjective ratings of spray density.
Technical Paper

The Influence of Heat Treat Process and Alloy on the Surface Microstructure and Fatigue Strength of Carburized Alloy Steel

Gas carburized and quenched low alloy steels typically produce surface microstructures which contain martensite, retained austenite and often NMTP's (non-martensitic transformation products). The NMTP's are caused by a reduction of surface hardenability in the carburizing process from loss of alloying elements to oxidation. Gas carburized low alloy steels such as SAE 8620 with NMTP's on the surface have been shown to have inferior bending fatigue properties when compared to more highly alloyed steels which do not form NMTP's, such as SAE 4615M. One method of minimizing the formation of oxides and eliminating NMTP formation during carburizing and quenching is to use plasma carburizing instead of conventional gas carburizing. In this study the microstructures and bending fatigue performance of plasma carburized SAE 8620 and SAE 4615M is compared to the same alloys conventionally gas carburized and quenched.
Technical Paper

The Fourier Transform Applied to Vehicle Exterior Noise Source Identification

This paper discusses a motor vehicle noise source identification technique designed for use during the SAE J986a or similar drive-by test procedure. It provides, by application of the Fourier Transform, the capability to obtain a narrowband (9.8 Hz) frequency resolution over an extended frequency range (0-10,000 Hz) at the peak vehicle noise level, a particular RPM, or a particular vehicle location in the test zone. Other features include corrections for the Doppler shift, averaging of noise tests, and subtraction of spectra of two separate noise tests from a component disconnect/reconnect procedure. The above analysis, in conjunction with the noise source isolation resulting directly from the disconnect procedure, identifies the major vehicle noise contributors in terms of their respective amplitudes and frequencies.
Technical Paper

The Ford GT Transaxle - Tailor Made in 2 Years

This paper describes the rapid development of the Ford GT transmission, from concept phase to production, where the technical challenges involved are implicit in the specifications provided. It presents the steps taken at a project management level to expedite development, as well as the tools used to design and rate components at the design stage. Examples of concurrent engineering are given as well as management techniques used to predict and address key risks. In addition, details of analysis and test procedures are given, underlining their contribution to the rapid introduction of the transmission to the market place.
Technical Paper

The Ford Aluminum Beaker Test: A New Tool for the Study of ATF Oxidation

A small-scale oxidation test for automatic transmission fluids has been developed. In the test air flow rates, temperature and catalytic activity can be closely controlled at desired levels. A test procedure for screening automatic transmission fluids is described. Data are presented illustrating the ability of the test to distinguish between different levels of oxidation resistance, the repeatability of the test, and the correlation achieved thus far with a presently used full-scale transmission oxidation test.
Technical Paper

The First Standard Automotive Crash Dummy

The SAE Recommended Practice J963 “Anthropomorphic Test Device for Dynamic Testing” describes a standard 50th percentile adult male anthropomorphic test dummy. For nearly three years the Crash Test Dummy Task Force worked with the limited data available in selecting values for the body dimensions and ranges of motion. The data for specifying the values of mass distribution were developed experimentally as was a test procedure for determining the dynamic spring rate of the thorax.
Technical Paper

The Effect of Exhaust Gas Recirculation on Soot Formation in a High-Speed Direct-injection Diesel Engine

A number of tests were conducted on a 2.5 litre, high-speed, direct-injection diesel engine running at various loads and speeds. The aim of the tests was to gain understanding which would lead to more effective use of exhaust gas recirculation (EGR) for controlling exhaust NOx whilst minimising the penalties of increased smoke emission and fuel consumption. In addition to exhaust emission measurements, in-cylinder sampling of combustion gases was carried out using a fast-acting, snatch-sampling valve. The results showed that the effectiveness of EGR was enhanced considerably by cooling the EGR. In addition to more effective NOx control, this measure also improved volumetric efficiency which assisted in the control of smoke emission and fuel consumption. This second of two papers on the use of EGR in diesel engines deals with the effects of EGR on soot emission and on the engine fuel economy.
Technical Paper

The Effect of Copper Level and Solidification Rate on the Aging Behavior of a 319-Type Cast Aluminum Alloy

Compositional and microstructural variations in a casting can often result in rather significant variations in the response to a given aging treatment, leading to location dependent mechanical properties. The objective of this study is to determine the effect of copper content and solidification rate on the aging behavior of a type 319 cast aluminum alloy. The nominal composition of the alloy is Al-7% Si-3.5% Cu-0.25% Mg, however, typical secondary 319 aluminum specifications allow copper levels to vary from 3-4%. Solidification rates throughout a casting can vary greatly due to, among other factors, differences in section size. To determine the effect of copper level and solidification rate on the aging response, aging curves were experimentally developed for this alloy. Three different copper levels (3, 3.5, 4%) and two solidification rates were used for this study. Aging temperatures ranged from 150-290°C with nine aging times at each temperature.
Technical Paper

The Aerodynamic Development of the 1986 European Ford Transit

THIS PAPER GIVES an overview of the aerodynamic development of a medium commercial vehicle. It deals with the setting out and achievement of the objectives of reducing aerodynamic drag as well as other aspects of aerodynamic design development such as engine cooling, heating and ventilating and sensitivity to side winds. Reference is made to measures taken to develop heater intake designs which are suitable for a low resistance vehicle with a fast attached flow over most of the forward surfaces. At the time of initial design studies, the Ford of Europe windtunnel in Cologne, West Germany, had not yet been commissioned and it was necessary therefore to adapt testing methods to suite the different windtunnels which were used at various stages of the development programme.
Technical Paper

System Simulation and Analysis of EPA 5-Cycle Fuel Economy for Powersplit Hybrid Electric Vehicles

To better reflect real world driving conditions, the EPA 5-Cycle Fuel Economy method encompasses high vehicle speeds, aggressive vehicle accelerations, climate control system use and cold temperature conditions in addition to the previously used standard City and Highway drive cycles in the estimation of vehicle fuel economy. A standard Powersplit Hybrid Electric Vehicle (HEV) system simulation environment has long been established and widely used within Ford to project fuel economy for the standard EPA City and Highway cycles. Direct modeling and simulation of the complete 5-Cycle fuel economy test set for HEV's presents significant new challenges especially with respect to modeling vehicle thermal management system and interactions with HEV features and system controls. It also requires a structured, systematic approach to validate the key elements of the system models and complete vehicle system simulations.
Technical Paper

Stress Durability Testing of Adhesively Bonded Steel

A stress durability test method that incorporates exposure to a corrosive environment has been used to evaluate the performance of adhesively bonded steel joints. For the systems examined, corrosion exposure is more damaging than exposure to humidity alone. The combination of load and corrosion exposure is substantially more severe than either alone. A method for analysis of the data and comparison of the test results for the evaluation of adhesive bond durability is proposed. The dependence of lifetime on load is defined as , where f is the ratio of applied load to initial, unexposed failure load. The exponent n provides a measure of the degree of acceleration of the interfacial degradation processes by load.
Technical Paper

Spectrogram Analysis of Accelerometer-Based Spark Knock Detection Waveforms

Spark knock pressure oscillations can be detected by a cylinder pressure transducer or by an accelerometer mounted on the engine block. Accelerometer-based detection is lower cost but is affected by extraneous mechanical vibrations and the frequency response of the engine block and accelerometer. The knock oscillation frequency changes during the expansion stroke because the chamber geometry is changing due to the piston motion and the burned gases are cooling. Spectrogram analysis shows the time-dependent frequency content of the pressure and acceleration signals, revealing characteristic signatures of knock and mechanical vibrations. Illustrative spectrograms are presented which yield physical insight into accelerometer-based knock detection.
Journal Article

Simulation and Optimization of an Aluminum-Intensive Body-on-Frame Vehicle for Improved Fuel Economy and Enhanced Crashworthiness - Front Impacts

Motivated by a combination of increasing consumer demand for fuel efficient vehicles, more stringent greenhouse gas, and anticipated future Corporate Average Fuel Economy (CAFE) standards, automotive manufacturers are working to innovate in all areas of vehicle design to improve fuel efficiency. In addition to improving aerodynamics, enhancing internal combustion engines and transmission technologies, and developing alternative fuel vehicles, reducing vehicle weight by using lighter materials and/or higher strength materials has been identified as one of the strategies in future vehicle development. Weight reduction in vehicle components, subsystems and systems not only reduces the energy needed to overcome inertia forces but also triggers additional mass reduction elsewhere and enables mass reduction in full vehicle levels.
Technical Paper

Significance of Burn Types, as Measured by Using the Spark Plugs as Ionization Probes, with Respect to the Hydrocarbon Emission Levels in S. I. Engines

A method has been developed for the acquisition and analysis of electrical signals, called combustion signals, from the cylinders of spark ignition engines based on using the spark plugs as ionization probes. A correlation has been established between the simultaneously recorded combustion and cylinder pressure signals based on which combustion signals could be used to identify three types of burns. These burn types were called good burns, slow burns, and misfires. The statistical occurrence of these burn types was also correlated with the hydrocarbon exhaust emission levels for engines operating under dynamometer simulated decelerations and for engines operating with various amounts of exhaust gas recirculation (EGR). Both production and experimental engines have been investigated. It was found that during both decelerations and operation with EGR, the degradation from good burns followed the same pattern irrespective of engine type.
Technical Paper

Shudder and Frictional Characteristics Evaluation of Dual Clutch Transmission Fluids

Under the initiative of The United States Council for Automotive Research LLC (USCAR) [1], we have developed and run comprehensive friction tests of dual clutch transmission fluids (DCTFs). The focus of this study is to quantify the anti-shudder durability over a simulated oil life of 75,000 shifts. We have evaluated six DCT fluids, including 2 fluids with known field shudder performance. Six different tests were conducted using a DC motor-driven friction test machine (GK test bench): 1. Force Controlled Continuous Slip, 2. Dynamic Friction, 3. Speed controlled Acceleration-Deceleration, 4. Motor-torque controlled Acceleration-Deceleration, 5. Static Friction, and 6. Static Break-Away. The test fluids were aged (with the clutch system) on the test bench to create a realistic aging of the entire friction system simultaneously.