Refine Your Search



Search Results

Technical Paper

The Influence of Heat Treat Process and Alloy on the Surface Microstructure and Fatigue Strength of Carburized Alloy Steel

Gas carburized and quenched low alloy steels typically produce surface microstructures which contain martensite, retained austenite and often NMTP's (non-martensitic transformation products). The NMTP's are caused by a reduction of surface hardenability in the carburizing process from loss of alloying elements to oxidation. Gas carburized low alloy steels such as SAE 8620 with NMTP's on the surface have been shown to have inferior bending fatigue properties when compared to more highly alloyed steels which do not form NMTP's, such as SAE 4615M. One method of minimizing the formation of oxides and eliminating NMTP formation during carburizing and quenching is to use plasma carburizing instead of conventional gas carburizing. In this study the microstructures and bending fatigue performance of plasma carburized SAE 8620 and SAE 4615M is compared to the same alloys conventionally gas carburized and quenched.
Technical Paper

The Effect of Copper Level and Solidification Rate on the Aging Behavior of a 319-Type Cast Aluminum Alloy

Compositional and microstructural variations in a casting can often result in rather significant variations in the response to a given aging treatment, leading to location dependent mechanical properties. The objective of this study is to determine the effect of copper content and solidification rate on the aging behavior of a type 319 cast aluminum alloy. The nominal composition of the alloy is Al-7% Si-3.5% Cu-0.25% Mg, however, typical secondary 319 aluminum specifications allow copper levels to vary from 3-4%. Solidification rates throughout a casting can vary greatly due to, among other factors, differences in section size. To determine the effect of copper level and solidification rate on the aging response, aging curves were experimentally developed for this alloy. Three different copper levels (3, 3.5, 4%) and two solidification rates were used for this study. Aging temperatures ranged from 150-290°C with nine aging times at each temperature.
Technical Paper


APPLICATIONS of nuclear energy in automotive manufacture have been made principally in the field of radioactivity. These are grouped under the following categories: radiography, nondestructive testing, gaging and control, tracer techniques, and static neutralizers. Radioactivity techniques are being used in foundry operations to check stock and metal levels in cupolas and distribution of element additives. In steel operations, these techniques are being used to check assimilation of ore-concentrate fines and thickness of rolled sheet steel. Other applications include measurement of pipe and wall thickness in pressure lines and engines, and inspection of castings and welds for internal faults. Radioactive techniques for improving processes, quality, and materials have potentially universal application. Greater industrial access to reactors will permit broader study and speed the development of new applications of radio-activity in industry.
Technical Paper

Steel Powders for High Performance Automotive Parts

Increased use of powder-forged connecting rods in the automotive industry prompted an investigation into the suitability of powders from different suppliers for this application. Specifications developed by North American users call for ultra clean powders to enhance machinability and fatigue life. Powders from four manufacturers were each blended with graphite and lubricant, then pressed, sintered and forged to full density. Metallographic samples were prepared and evaluated for inclusion content. In addition, the powders were mixed to the composition of connecting rods, (C - 0.5%, Cu - 2% and MnS - 0.3%), and were similarly pressed, sintered and forged. Test bars were machined from the forged discs. Uniaxial fatigue tests were performed in the tension-compression mode and strain-life curves were developed. It was determined that all powders examined were very clean and were comparable in their inclusion content.
Technical Paper


AMONG the many outstanding advantages of the shell molding process of casting crankshafts, as described here, are the following: 1. Manner in which entire process responds to a high degree of automation. 2. Close tolerances that can be maintained from casting to casting. 3. Raw sand requirements are reduced from 125 lb (previous method) to 20 lb. 4. Results in 70% reduction in weight of chips produced. 5. Resulting crankshafts have highest wear resistance and exceptional endurance. 6. Gives additional design leeway: Allowing the most efficient distribution of weight. Contributing to engine compactness by varying the casting contour to prevent potential interferences.
Technical Paper

Powder Metallurgy Parts Quality is a Partnership

Under a new program of quality control in the field of powder metallurgy automotive parts called quality assurance, the supplier is made a closer partner with the buyer to get a more dependable part that consistently meets all requirements and specifications. The quality assurance program consists of review of potential suppliers, contract negotiations, initial quality assurance surveys, and routine quality assurance surveys.
Technical Paper

Powder Metal Parts for Automotive Applications–Part III

The constant challenge for automotive engineers to design vehicles with greater reliability at lower cost has brought powder metallurgy (P/M) to the foreground. This technology provides parts to or near net shape and results in savings of material, energy, capital equipment and floor space. This paper is an extension of SAE reports 850458 and 870133 and describes automotive powder metal components not previously identified. It should help engineers find cost effective applications early in the design stage so that P/M technology can be efficiently adopted. In addition, recent important technological developments in the P/M field applicable to automotive parts are highlighted. In particular, increased reliability achieved through SPC is stressed. A novel blending process is described whereby the alloying ingredients are “glued” to iron powder particles resulting in an increase in P/M quality through improved homogeneity.
Technical Paper

Powder Metal Parts for Automotive Applications, Part II

The trend to production of near net shape components in the automotive industry and the constant crusade for cost reduction has brought powder metallurgy technology to the foreground. Savings of material, energy, manufacturing cost and the avoidance of capital expenditure are some of the principal benefits of this process. This paper is an extension of the previously published report. SAE 850458, which describes P/M components in the automobile. It also includes a new family of parts recently identified by the authors, i.e., sensors used in conjunction with electronics and microcomputers. In addition, progress made in recent years in P/M technology is summarized. This article is written for automotive design engineers to show various new applications of P/M and allow them to take advantage of the potential savings this technology offers.
Technical Paper

Powder Metal Parts for Automotive Applications

In line with the present trend to make structural parts at or near net shape, the powder metallurgy process is being studied more and more by automotive design and materials engineers who are finding an increased application for this energy and cost saving process. Many new applications, besides some older ones, of P/M by domestic and overseas automotive manufacturers are presented outlining material specifications and service conditions for engine, transmission and chassis parts. In addition to conventional porous P/M parts, examples of high tensile fully dense precision hot formed P/M parts are presented which give superior service life and lighter weight than conventional wrought steel. Despite the decreased size and weight of future automobiles, an increased number of applications of powder metal is likely to result in a greater usage of P/M materials per vehicle.
Technical Paper

Permanent Mold Casting and Creep Behavior of Mg - 4 Al - 4 X: (Ca, Ce, La, Sr) Alloys

Creep-resistant magnesium alloys for automotive powertrain applications offer significant potential for vehicle weight reduction. In this study permanent mold casting, microstructure and creep behavior have been investigated for a series of ternary magnesium alloys (Mg-4Al-4X (X: Ca, Ce, La, Sr) wt%) and AXJ530 (Mg-5Al-3Ca-0.15Sr, wt%). A permanent mold was instrumented with twelve thermocouples and mold temperature was monitored during the casting process. Average mold temperature increased from 200°C to 400°C during a typical alloy casting series (fifteen to twenty castings). The cast microstructure for all alloys consists of primary α-Mg globular phase surrounded by eutectic structure which is composed of intermetallic(s) and α-Mg magnesium phases. The primary cell size of the AXJ530 increased from 18 to 24 μm with increasing mold temperature and a similar trend is expected for all alloys.
Journal Article

Optimization Strategies to Explore Multiple Optimal Solutions and Its Application to Restraint System Design

Design optimization techniques are widely used to drive designs toward a global or a near global optimal solution. However, the achieved optimal solution often appears to be the only choice that an engineer/designer can select as the final design. This is caused by either problem topology or by the nature of optimization algorithms to converge quickly in local/global optimal or both. Problem topology can be unimodal or multimodal with many local and/or global optimal solutions. For multimodal problems, most global algorithms tend to exploit the global optimal solution quickly but at the same time leaving the engineer with only one choice of design. The paper explores the application of genetic algorithms (GA), simulated annealing (SA), and mixed integer problem sequential quadratic programming (MIPSQP) to find multiple local and global solutions using single objective optimization formulation.
Technical Paper


NODULAR cast iron, so called because the graphite is present as finely dispersed, well-rounded particles, is made in two stages: The first stage consists of the addition of magnesium or other carbide formers, which promote the formation of white iron in one normally solidifying gray. In the second stage a ferrosilicon type of inoculant overcomes the tendency toward white iron and causes the graphite to precipitate out in the form of small spherulites. The methods of making nodular iron, the effect of composition on physical properties, economic factors involved, and potential applications are discussed in this paper.
Technical Paper

Mechanical and Thermophysical Properties of Magnesium Alloy Extrusions

Magnesium alloy extrusions offer potentially more mass saving compared to magnesium castings. One of the tasks in the United States Automotive Materials Partnership (USAMP) ?Magnesium Front End Research and Development? (MFERD) project is to evaluate magnesium extrusion alloys AM30, AZ31 and AZ61 for automotive body applications. Solid and hollow sections were made by lowcost direct extrusion process. Mechanical properties in tension and compression were tested in extrusion, transverse and 45 degree directions. The tensile properties of the extrusion alloys in the extrusion direction are generally higher than those of conventional die cast alloys. However, significant tension-compression asymmetry and plastic anisotropy need to be understood and captured in the component design.
Technical Paper

Master Alloys to Obtain Premixed Hardenable Powder Metal Steels

Systems of alloys for liquid phase alloying during sintering were investigated. The solidification range of alloys of Mn-Ni-Cr-Mo-Fe and Mn-Cu-Ni was determined. Alloys with the lowest and narrowest melting range were prepared and atomized in nitrogen. Admixtures of master alloys to water-atomized, forging grade, pure iron powder were sintered at 1232°C (2250°F). After hot forging, these P/M steels exhibited hardenabilities which were 75%-90% of theoretical hardenability, as calculated from the factors for conventional steels. Alloying efficiency was further improved to 85%-100% of theoretical hardenability when additions of approximately 2% silicon and 1% rare earth misch-metal were made to the master alloys. The silicon and rare earth misch-metal additions were used to enhance diffusion and sintering.
Technical Paper

MMLV: Door Design and Component Testing

The Multi Material Lightweight Vehicle (MMLV) developed by Magna International and Ford Motor Company is a result of a US Department of Energy project DE-EE0005574. The project demonstrates the lightweighting potential of a five passenger sedan, while maintaining vehicle performance and occupant safety. Prototype vehicles were manufactured and limited full vehicle testing was conducted. The Mach-I vehicle design, comprised of commercially available materials and production processes, achieved a 364kg (23.5%) full vehicle mass reduction, enabling the application of a 1.0-liter three-cylinder engine resulting in a significant environmental benefit and fuel reduction. This paper reviews the mass reduction and structural performance of aluminum, magnesium, and steel components for a lightweight multi material door design for a C/D segment passenger vehicle. Stiffness, durability, and crash requirements are assessed.
Technical Paper

Lead Accumulation on Automotive Catalysts

Engine dynamometer and laboratory flow reactor studies of automotive catalyst deactivation caused by the use of leaded fuel indicate that there are two different deactivation mechanisms: one, which dominates between 700 and 800 C, is the poisoning of the active platinum sites by lead oxide, or perhaps lead, and the other, which occurs below 550 C, is a build up of a gas diffusion barrier of lead sulfate. Both deactivation mechanisms can be temporarily reversed. Poisoning is reversed when the platinum is freed of lead oxide by lead sulfate formation below 650 C; and the barrier formed below 550 C can be made more permeable by thermal sintering of the lead sulfate at 600 to 700 C or its decomposition to lead oxide at 700 to 800 C. However, further exposure of the catalyst will again render it inactive via the mechanism predominating in that temperature region.
Technical Paper

Influence of the Local Mechanical Behavior on Component Deformation in a Mg Alloy Thin-Walled Frame Casting

A demonstration structure was cast in AM60. The structure, known as the Generic Frame Casting or GFC, was designed specifically to mimic features seen in castings for closure applications. Excised samples were subsequently removed from different areas of the casting and tested under axial loading conditions. Component level tests were also conducted. Comparison of the excised sample results and the component level testing indicated the influence of local properties on the component level deformation. It was shown that varying the casting processing conditions could change the local ductility and yield strength in different areas of casting with the same geometry. Lowering the local ductility decreased the total displacement in a component level test and lowered the amount of energy absorption. Therefore, understanding the processing conditions and their influence on the local properties is important for predicting behavior in a component level test.
Technical Paper

Increased Fatigue Strength of Powder-Forged Connecting Rods by Optimized Shot Peening

Shot peening is a commonly used surface treatment process used to improve the fatigue life of aircraft, automotive and other highly stressed structural components. This improvement is attributed to the formation of compressive residual stress on the surface layer of the material by the impingement of spherical media (shot). The compressive residual stress usually decreases the tensile stress created in the component by “in service” external forces and therefore increases the fatigue strength of the part. To quantify the improvement resulting from shot peening, the fatigue behavior of powder-forged connecting rods and laboratory test bars from the base material (2% copper steel), both in the stress-free (unpeened) and surface treated (shot peened) condition were compared. The fatigue data were correlated with the residual stress generated at the surface. The stress magnitude and depth were determined using x-ray diffraction analysis.
Technical Paper

Friction and Wear Characteristics of Micro-Arc Oxidation Coating for Light Weight, Wear Resistant, Powertrain Component Application

An extremely tough alumina based ceramic coating produced by a modified anodizing process developed at Moscow Aviation Institute has been evaluated for light weight, wear resistant component applications in automotive powertrain. The process details and test results from comparative evaluation of friction and wear properties for cylinder bore application, referenced to cast iron baseline, are presented and discussed.