Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Vehicle System Control for Start-Stop Powertrains with Automatic Transmissions

2013-04-08
2013-01-0347
The 2013 Ford Fusion will be launched with an optional automatic engine start-stop feature. To realize engine start-stop on a vehicle equipped with a conventional powertrain, there are two major challenges in the vehicle system controls. First, the propulsive torque delivery from a stopped engine has to be fast. The vehicle launch delay has to be minimized such that the corporate vehicle attributes can be met. Second, the fuel economy improvement offered by this technology has to justify the cost associated with it. In pursuing fuel economy, the driver's comfort and convenience should be minimally impacted. To tackle these challenges, a vehicle system control strategy has been developed to accurately interpret the driver's intent, monitor the vehicle subsystem's power demands, schedule engine automatic stop and re-start, and coordinate the fast and smooth torque delivery to the wheels.
Technical Paper

Variable Displacement by Engine Valve Control

1978-02-01
780145
Intake and exhaust valve control has been combined with engine calibration control by an on-board computer to achieve a Variable Displacement Engine with improved BSFC during part throttle operation. The advent of the on-board computer, with its ability to provide integrated algorithms for the fast accurate flexible control of the entire powertrain, has allowed practical application of the valve disabler mechanism. The engine calibration basis and the displacement selection criteria are discussed, as are the fuel economy, emissions and behavior of a research vehicle on selected drive cycles ( Metro, Highway and Steady State ). Additionally, the impact upon vehicle driveability and other related subsystems ( e.g., transmission ) is addressed.
Technical Paper

Transient Heat Transfer of 42V Ni-MH Batteries for an HEV Application

2002-06-03
2002-01-1964
While a Ni-MH battery has good performance properties, such as a high power density and no memory effect, it needs a powerful thermal management system to maintain within the required narrow thermal operating range for the 42V HEV applications. Inappropriate battery temperatures result in degradation of the battery performance and life. For the battery cooling system, air is blown into the battery pack. The exhaust is then vented outside due to potential safety issues with battery emissions. This cooling strategy can significantly impact fuel economy and cabin climate control. This is particularly true when the battery is experiencing frequent charge and discharge of high-depths in extreme hot or cold weather conditions. To optimize performance and life of HEV traction batteries, the battery cooling design must keep the battery operation temperature below a maximum value and uniform across the battery cells.
Journal Article

Towards an Optimum Aftertreatment System Architecture

2015-01-14
2015-26-0104
Aftertreatment system design involves multiple tradeoffs between engine performance, fuel economy, regulatory emission levels, packaging, and cost. Selection of the best design solution (or “architecture”) is often based on an assumption that inherent catalyst activity is unaffected by location within the system. However, this study acknowledges that catalyst activity can be significantly impacted by location in the system as a result of varying thermal exposure, and this in turn can impact the selection of an optimum system architecture. Vehicle experiments with catalysts aged over a range of mild to moderate to severe thermal conditions that accurately reflect select locations on a vehicle were conducted on a chassis dynamometer. The vehicle test data indicated CO and NOx could be minimized with a catalyst placed in an intermediate location.
Technical Paper

TiAl-Based Alloys for Exhaust Valve Applications

1993-03-01
930620
The recent development of TiAl-based alloys by the aerospace community has provided an excellent material alternative for hot components in automotive engines. The low density combined with an elevated temperature strength similar to that of Ni-base superalloys make TiAl-based alloys very attractive for exhaust valve applications. Lighter weight valvetrain components improve performance and permit the use of lower valve spring loads which reduce noise and friction and enhance fuel economy. However, difficult fabricability and a perception that TiAl alloys are high cost, low volume aerospace materials must be overcome in order to permit consideration for use in high-volume automotive applications. This paper provides a comparison of properties for several exhaust valve alternative materials. The density of TiAl alloys is lower than Ti alloys with creep and fatigue properties equivalent to IN-751, a current high performance exhaust valve material.
Technical Paper

The Performance of a Multigap Spark Plug Designed for Automotive Applications

1976-02-01
760264
The electrical principle of operation, the geometrical and electrical circuit constraints on the design of, and the electrical and in-engine performance of a multigap spark plug developed for automotive applications are described. The electrical principle of operation is based on successively breaking down an array of spark gaps through the use of a resistive ladder network. The measurements evaluating the electrical performance of various multigap designs indicate that these plugs can deliver up to twice the energy of a single gap plug to the arcs, using the same ignition system. The increased amount of energy is also delivered in a shorter time than for single gap plugs.
Technical Paper

The Influence of Induction and Exhaust Processes on Emissions and Fuel Consumption in the Spark Ignited Engine

1977-02-01
770880
This paper describes an analysis of the induction and exhaust processes of the spark ignited engine. The analysis has been combined with an overall engine simulation to provide greater flexibility in studying the effects of induction/exhaust related parameters on engine emissions and fuel economy. Results are presented to illustrate the use of the engine model in predicting engine behavior in non-conventional configurations such as engine load control using an early intake valve closing technique.
Technical Paper

The Future of the FREE-PISTON ENGINE in Commercial Vehicles

1958-01-01
580032
THIS paper describes the development and utilization of a new Ford free-piston power-plant, the model 519. Mr. Noren traces the development of the engine from the initial idea to the point where commercial utilization could be considered. Mr. Erwin describes one commercial use: in the Typhoon tractor. The ratio of size and weight to horsepower is favorable for farm tractors, being smaller and lighter than equivalent diesel engines. The performance of the tractor has been satisfactory thus far, operating smoothly and being practically vibration-free, with little noise. The advantages of the free-piston gasifier, as reported by the authors, are: flexibility, fuel economy, no need for auxiliary starting engine, economical manufacture of a wide range of engine sizes, adaptability to a wide range of fuels, and good torque characteristics.
Technical Paper

The Ford PROCO Engine Update

1978-02-01
780699
The Ford PROCO stratified charge engine combines the desirable characteristics of premixed charge and Diesel engines. The outstanding characteristics of premixed charge engines are their high specific output, wide speed range, light weight and easy startability but they exhibit only modest fuel economy and relatively high exhaust emissions. The desirable characteristic of the Diesel engine is its outstanding fuel economy. However, the disadvantages of the Diesel, which include noisy operation, limited speed range, exhaust odor, smoke, hard startability, and particulate emissions have tended to limit their acceptance. In the gasoline fueled, PROCO stratified charge engine, direct cylinder fuel injection permits operation at overall lean mixture ratios and higher compression ratio. These features enable the PROCO engine to achieve brake specific fuel consumption values in the range of prechamber diesel engines.
Technical Paper

The Effect of Valve Overlap on Idle Operation: Comparison of Model and Experiment

1993-10-01
932751
Validation of the Ford General Engine SIMulation program (GESIM) with measured firing data from a modified single cylinder Ricardo HYDRA research engine is described. GESIM predictions for peak cylinder pressure and burn duration are compared to test results at idle operating conditions over a wide range of valve overlap. The calibration of GESIM was determined using data from only one representative world-wide operating point and left unchanged for the remainder of the study. Valve overlap was varied by as much as 36° from its base setting. In most cases, agreement between model and data was within the accuracy of the measurements. A cycle simulation computer model provides the researcher with an invaluable tool for acquiring insight into the thermodynamic and fluid mechanical processes occurring in the cylinder of an internal combustion engine.
Technical Paper

The Effect of Exhaust Gas Recirculation on Soot Formation in a High-Speed Direct-injection Diesel Engine

1996-02-01
960841
A number of tests were conducted on a 2.5 litre, high-speed, direct-injection diesel engine running at various loads and speeds. The aim of the tests was to gain understanding which would lead to more effective use of exhaust gas recirculation (EGR) for controlling exhaust NOx whilst minimising the penalties of increased smoke emission and fuel consumption. In addition to exhaust emission measurements, in-cylinder sampling of combustion gases was carried out using a fast-acting, snatch-sampling valve. The results showed that the effectiveness of EGR was enhanced considerably by cooling the EGR. In addition to more effective NOx control, this measure also improved volumetric efficiency which assisted in the control of smoke emission and fuel consumption. This second of two papers on the use of EGR in diesel engines deals with the effects of EGR on soot emission and on the engine fuel economy.
Technical Paper

The Corporate Technical Information System: The Ford Inhouse information Utility

1987-10-01
871927
Ford Motor Company has developed an inhouse computerized database of product and technical data as an information utility for product and manufacturing engineers and business and marketing analysts. The Corporate Technical Information System (CTIS) is interactive, user friendly, up-to-date, and low cost. CTIS is designed to complement commercial information services. The menu driven program gives users access to IS files including automotive periodical abstracts, vehicle dimensional data, EPA fuel economy data. SAE paper abstracts since 1966, and worldwide materials standards. Searching is done through User defined keywords using Boolean logic to create individual search strategies. CTIS has been used by Ford personnel worldwide since early 1985. Future developments may include offering CTIS to vendors or components and services to Ford Motor Company.
Technical Paper

System Simulation and Analysis of EPA 5-Cycle Fuel Economy for Powersplit Hybrid Electric Vehicles

2013-04-08
2013-01-1456
To better reflect real world driving conditions, the EPA 5-Cycle Fuel Economy method encompasses high vehicle speeds, aggressive vehicle accelerations, climate control system use and cold temperature conditions in addition to the previously used standard City and Highway drive cycles in the estimation of vehicle fuel economy. A standard Powersplit Hybrid Electric Vehicle (HEV) system simulation environment has long been established and widely used within Ford to project fuel economy for the standard EPA City and Highway cycles. Direct modeling and simulation of the complete 5-Cycle fuel economy test set for HEV's presents significant new challenges especially with respect to modeling vehicle thermal management system and interactions with HEV features and system controls. It also requires a structured, systematic approach to validate the key elements of the system models and complete vehicle system simulations.
Technical Paper

Study of a Stratified-Charge DISI Engine with an Air-Forced Fuel Injection System

2000-06-19
2000-01-2901
A small-bore 4-stroke single-cylinder stratified-charge DISI engine using an air-forced fuel injection system has been designed and tested under various operating conditions. At light loads, fuel consumption was improved by 16∼19% during lean, stratified-charge operation at an air-fuel ratio of 37. NOx emissions, however, were tripled. Using EGR during lean, stratified-charge operation significantly reduced NOx emissions while fuel consumption was as low as the best case without EGR. It was also found that combustion and emissions near the lean limit were a strong function of the combination of injection and spark timings, which affect the mixing process. Injection pressure, air injection duration, and time delay between fuel and air injections also played a role. Generating in-cylinder air swirl motion slightly improved fuel economy.
Technical Paper

Starter/Alternator Design for Optimized Hybrid Fuel Economy

2000-11-01
2000-01-C061
A Starter/Alternator (S/A) has been developed at Ford Research laboratories for hybrid electric vehicle applications. During development, the vehicle concept of operation and the system performance requirements were used to select the proper technology. The specification development, component selection and subsystem operation process is described. Subsystem performance and vehicle fuel economy are compared and evaluated using hybrid vehicle simulation analysis. These results can be used to identify potential subsystem modifications and alternative vehicle control strategies.
Technical Paper

Sound Package Design for Lightweight Vehicles

2015-06-15
2015-01-2343
OEMs are racing to develop lightweight vehicles as government regulations now mandate automakers to nearly double the average fuel economy of new cars and trucks by 2025. Lightweight materials such as aluminum, magnesium and carbon fiber composites are being used as structural members in vehicle body and suspension components. The reduction in weight in structural panels increases noise transmission into the passenger compartment. This poses a great challenge in vehicle sound package development since simply increasing weight in sound package components to reduce interior noise is no longer an option [1]. This paper discusses weight saving approaches to reduce noise level at the sources, noise transmission paths, and transmitted noise into the passenger compartment. Lightweight sound package materials are introduced to treat and reduce airborne noise transmission into multi-material lightweight body structure.
Technical Paper

Some Concepts of DISI Engine for High Fuel Efficiency and Low Emissions

2002-10-21
2002-01-2747
Stratified-charge DISI engines have been launched in the market by Mitsubishi, Toyota, and Nissan. This paper discusses the current production stratified-charge DISI systems and some alternative systems, including the system using air-forced fuel injection and a proposed system that uses a swirl flow in the piston bowl with a special shape to separate the fuel-rich mixture layer from the wall surface. New DISI concepts are proposed to overcome some drawbacks of current bowl-in-piston type stratified-charge DISI systems. Charge stratification can be realized by using a soft spray with proper spray penetration, droplet size, and cone angle, as shown by CFD simulation results. The drawbacks of fuel wall wetting, soot limited load with charge stratification, large surface to volume ratio, etc., of the bowl-in-piston type system can be minimized.
Journal Article

Simulation and Optimization of an Aluminum-Intensive Body-on-Frame Vehicle for Improved Fuel Economy and Enhanced Crashworthiness - Front Impacts

2015-04-14
2015-01-0573
Motivated by a combination of increasing consumer demand for fuel efficient vehicles, more stringent greenhouse gas, and anticipated future Corporate Average Fuel Economy (CAFE) standards, automotive manufacturers are working to innovate in all areas of vehicle design to improve fuel efficiency. In addition to improving aerodynamics, enhancing internal combustion engines and transmission technologies, and developing alternative fuel vehicles, reducing vehicle weight by using lighter materials and/or higher strength materials has been identified as one of the strategies in future vehicle development. Weight reduction in vehicle components, subsystems and systems not only reduces the energy needed to overcome inertia forces but also triggers additional mass reduction elsewhere and enables mass reduction in full vehicle levels.
Technical Paper

Selection Families of Optimal Engine Designs Using Nonlinear Programming and Parametric Sensitivity Analysis

1997-05-01
971600
The selection process of key engine design variables to maximize peak power subject to fuel economy and packaging objectives is formulated as an optimization problem readily solved with nonlinear programming. The merit of this approach lies not in finding a single optimal engine, but in identifying a family of optimal designs dependent on parameter changes in the constraint set. Sensitivity analysis of the optimum to packaging parameters, fuel economy parameters, and manufacturing parameters is presented and discussed in the context of product development decisions.
Technical Paper

Scavenging of a Firing Two-Stroke Spark-Ignition Engine

1994-03-01
940393
Current demands for high fuel efficiency and low emissions in automotive powerplants have drawn attention to the two-stroke engine configuration. The present study measured trapping and scavenging efficiencies of a firing two-stroke spark-ignition engine by in-cylinder gas composition analysis. Intermediate results of the procedure included the trapped air-fuel ratio and residual exhaust gas fraction. Samples, acquired with a fast-acting electromagnetic valve installed in the cylinder head, were taken of the unburned mixture without fuel injection and of the burned gases prior to exhaust port opening, at engine speeds of 1000 to 3000 rpm and at 10 to 100% of full load. A semi-empirical, zero-dimensional scavenging model was developed based on modification of the non-isothermal, perfect-mixing model. Comparison to the experimental data shows good agreement.
X