Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Wind Noise and Aerodynamic Drag Optimization of Outside Rear View Mirrors

1993-05-01
931292
Automotive outside rear view mirror shape has become an important consideration in achieving wind noise and aerodynamic performance objectives. This paper describes a two step process used to develop a mirror shape which meets both wind noise and aerodynamic objectives. First, basic understanding of door mounted verses sail mounted mirrors and shape parameters was obtained by evaluating selected shapes and studying their physical measurements relative to their measured responses. Relationships between the wind noise and drag responses revealed performance range limitations for sail mounted mirrors. Second, a central composite experimental design was utilized to more closely investigate door mounted mirror shape parameters to determine optimal mirror performance potential. The resulting empirical models developed were used to determine the best overall solution.
Technical Paper

Wind Noise Spectral Predictions Using a Lattice-Based Method

1999-05-17
1999-01-1810
The current ability of the Virtual Aerodynamic/ Aeroacoustic Wind Tunnel to predict interior vehicle sound pressure levels is demonstrated using an automobile model which has variable windshield angles. This prediction method uses time-averaged flow solutions from a lattice gas CFD code coupled with wave number-frequency spectra for the various flow regimes to calculate the side window vibration from which the sound pressure level spectrum at the driver's ear is determined. These predictions are compared to experimental wind tunnel data. The results demonstrate the ability of this methodology to correctly predict wind noise spectral trends as well as the overall loudness at the driver's ear. A more sophisticated simulation method employing the same lattice gas code is investigated for prediction of the time-accurate flow field necessary to compute the actual side glass pressure spectra.
Technical Paper

WHERE DOES ALL THE POWER GO?

1957-01-01
570058
AS a basis for the analyses of this symposium, a hypothetical car has been used to evaluate the engine power distribution in performance. Effects of fuel,-engine accessories, and certain car accessories are evaluated. The role of the transmission in making engine power useful at normal car speeds is also discussed. Variables encountered in wind and rolling resistance determinations are reevaluated by improved test techniques. Net horsepower of the car in terms of acceleration, passing ability and grade capability are also summarized.
Technical Paper

Virtual Engine Dynamometer in Service Life Testing of Transmissions: A Comparison Between Real Engine and Electric Dynamometers as Prime Movers in Validation Test Rigs

2010-04-12
2010-01-0919
A test cell was developed for evaluating a 6-speed automatic transmission. The target vehicle had an internal combustion 5.4L gasoline V8 engine. An electric dynamometer was used to closely simulate the engine characteristics. This included generating mean torque from the ECU engine map, with a transient capability of 10,000 rpm/second. Engine inertia was simulated with a transient capability of 20,000 rpm/second, and torque pulsation was simulated individually for each piston, with a transient capability of 50,000 rpm/second. Quantitative results are presented for the correlation between the engine driven and the dynamometer driven transmission performance over more than 60 test cycles. Concerns about using the virtual engine in validation testing are discussed, and related to the high frequency transient performance required from the electric dynamometer. Qualitative differences between the fueled engine and electric driven testing are presented.
Technical Paper

Vibrational Sensor Based on Fluid Damping Mechanisms

1990-02-01
900489
A piezoelectrically driven vibrating cantilever blade is damped by a number of mechanisms including viscous damping in a still fluid and aerodynamic damping in a flow. By measuring the damping of devices operating at resonance in the 1 to 5 kHz region, one can measure such properties as mass flow, absolute pressure or the product of molecualar mass and viscosity. In the case of the mass flow measurement, the device offers a mechanical alternative to hotwire and hot film devices for the automotive application.
Technical Paper

Verification Testing of the 1970 Anti-Theft Steering Column

1970-02-01
700582
This paper outlines the key elements in a laboratory reliability verification test program for an automotive sub-system. Many of these elements are described in some detail through the various stages of development from prototype concept to production. By means of an actual case study, verification testing of the 1970 Ford Anti-Theft Steering Column, steps required to design tests which yield meaningful information and the rationale used to analyze the results are presented. The steering column on a late model automobile is a complex system which combines several functions and features; steering, shifting, warning devices (turn signal and emergency flashers), ignition switch, anti-theft devices plus several safety features. The effectiveness of the overall verification program is evaluated through the presentation of actual field-feedback results.
Technical Paper

Vehicular Emission Performance Simulation

2012-04-16
2012-01-1059
Several emission performance tests like Butane Working Capacity (BWC), Cycle Life, and ORVR load tests are required for the certification of a vehicle; these tests are both expensive and time consuming. This paper presents a test process based upon analytical simulation of BWC of an automotive carbon canister in order to greatly reduce the cost incurred in physical tests. The computational model for the fixed-bed system of a carbon canister is based upon non-equilibrium, non-Isothermal, and non-adiabatic algorithm to simulate the real life loading/purging of hydrocarbon vapors from this device.
Technical Paper

Vehicle Wind Noise Analysis Using a SEA Model with Measured Source Levels

2001-04-30
2001-01-1629
A series of tests have been performed on a production vehicle to determine the characteristics of the external turbulent flow field in wind tunnel and road conditions. Empirical formulas are developed to use the measured data as source levels for a Statistical Energy Analysis (SEA) model of the vehicle structural and acoustical responses. Exterior turbulent flow and acoustical subsystems are used to receive power from the source excitations. This allows for both the magnitudes and wavelengths of the exterior excitations to be taken into account - a necessary condition for consistently accurate results. Comparisons of measured and calculated interior sound levels show good correlation.
Technical Paper

Vehicle Sound Package - Art or Science?

1972-02-01
720508
Sound package engineering has always been an art developed through experience and much subjective road testing. Because the problem is complex, it is essential to have a logical procedure to achieve the most efficient sound package. The quiet car concept is proposed as a solution. Additionally, a plea is made for relevant automobile-oriented material test procedures to be recognized industry-wide.
Technical Paper

Vehicle Flow Measurement and CFD Analysis for Wind Noise Assessment

1997-02-24
970403
A time cost effective methodology has been developed for the prediction of the A-pillar vortex formation and the side and the rear window flow separation for the purpose of wind noise assessment. This methodology combines a simplified Computational Fluid Dynamics (CFD) model and wind tunnel test data by CFD post-processing tools. The solution of the simplified CFD model provides background data for the whole flow field, but it lacks detail features such as mirror, sealing groove and glass in-set, which are locally important but difficult to mesh and require a very fine mesh resolution. The wind tunnel test data was taken in the specific areas of interest at the A-pillar, side window, rear window area, and roof from a real automotive. Then the wind tunnel test data was superposed upon the simplified CFD model to correct the numerical error due to geometry simplification and insufficient mesh resolution.
Technical Paper

Vehicle Electrical System Computer Aided Design (VESCAD) Tool

1993-03-01
930841
The Vehicle Electrical System Computer Aided Design (VESCAD) tool is a means by which the vehicle electrical system, including all wiring and the components attached to wiring can be laid out over an outline of the planform (looking down on the vehicle) view of the vehicle. This graphical representation of the vehicle electrical system is linked to a database that contains the definition of all the wiring of the vehicle plus electrical component attributes. The vehicle electrical system can be composed and completely manipulated graphically, using a mouse, and the database is dynamically changed, including automatic re-routing of the wiring in the wiring harnesses. A complete series of reports can be generated once a vehicle electrical system is configured using VESCAD. All of the reports can be keyed by component(s), harness(es), subsystem(s) or the entire vehicle.
Technical Paper

Vehicle Body Structure Durability Analysis

1995-04-01
951096
Due to several indeterminate factors, the assessment of the durability performance of a vehicle body is traditionally accomplished using test methods. An analytical fatigue life prediction method (four-step durability process) that relies mainly on numerical techniques is described in this paper. The four steps comprising this process include the identification of high stress regions, recognizing the critical load types, determining the critical road events and calculation of fatigue life. In addition to utilizing a general purpose finite element analysis software for the application of the Inertia Relief technique and a previously developed fatigue analysis program, two customized programs have been developed to streamline the process into an integrated, user-friendly tool. The process is demonstrated using a full body, finite element model.
Technical Paper

Vehicle Aerodynamic Shape Optimization

2011-04-12
2011-01-0169
Recent advances in morphing, simulation, and optimization technologies have enabled analytically driven aerodynamic shape optimization to become a reality. This paper will discuss the integration of these technologies into a single process which enables the aerodynamicist to optimize vehicle shape as well as gain a much deeper understanding of the design space around a given exterior theme.
Journal Article

Validation and Sensitivity Studies for SAE J2601, the Light Duty Vehicle Hydrogen Fueling Standard

2014-04-01
2014-01-1990
The worldwide automotive industry is currently preparing for a market introduction of hydrogen-fueled powertrains. These powertrains in fuel cell electric vehicles (FCEVs) offer many advantages: high efficiency, zero tailpipe emissions, reduced greenhouse gas footprint, and use of domestic and renewable energy sources. To realize these benefits, hydrogen vehicles must be competitive with conventional vehicles with regards to fueling time and vehicle range. A key to maximizing the vehicle's driving range is to ensure that the fueling process achieves a complete fill to the rated Compressed Hydrogen Storage System (CHSS) capacity. An optimal process will safely transfer the maximum amount of hydrogen to the vehicle in the shortest amount of time, while staying within the prescribed pressure, temperature, and density limits. The SAE J2601 light duty vehicle fueling standard has been developed to meet these performance objectives under all practical conditions.
Technical Paper

Vacuum EGR Valve Actuator Model

1998-05-04
981438
As part of a general EGR system model, an adiabatic thermodynamic vacuum EGR valve actuator model was developed and validated. The long term goal of the work is improved system operation by correctly specifying and allocating EGR system component requirements.
Technical Paper

Use of FCRASH in a Door Openability Simulation

1997-04-08
971526
During frontal and rear end type collisions, very large forces will be imparted to the passenger compartment by the collapse of either front or rear structures. NCAP tests conducted by NHTSA involve, among other things, a door openability test after barrier impact. This means that the plastic/irreversible deformations of door openings should be kept to a minimum. Thus, the structural members constituting the door opening must operate during frontal and rear impact near the elastic limit of the material. Increasing the size of a structural member, provided the packaging considerations permit it, may prove to be counter productive, since it may lead to premature local buckling and possible collapse of the member. With the current trend towards lighter vehicles, recourse to heavier gages is also counterproductive and therefore a determination of an optimum compartment structure may require a number of design iterations. In this article, FEA is used to simulate front side door behavior.
Technical Paper

Use of Experimentally Measured In-Cylinder Flow Field Data at IVC as Initial Conditions to CFD Simulations of Compression Stroke in I.C. Engines - A Feasibility Study

1994-03-01
940280
The feasibility of using experimentally determined flow fields at intake valve closing, IVC, as initial conditions for computing the in-cylinder flow dynamics during the compression stroke is demonstrated by means of a computer simulation of the overall approach. A commercial CFD code, STAR-CD, was used for this purpose. The study involved two steps. First, in order to establish a basis for comparison, the in-cylinder flow field throughout the intake and compression strokes, from intake valve opening, IVO, to top dead center, TDC, was computed for a simple engine geometry. Second, experimental initial conditions were simulated by randomly selecting and perturbing a set of velocity vectors from the computed flow field at IVC.
Technical Paper

Upfront Durability CAE Analysis for Automotive Sheet Metal Structures

1996-02-01
961053
Automotive product development requires higher degree of quality upfront engineering, faster CAE turn-around, and integration with other functional requirements. Prediction of potential durability concerns using analytical methods for sheet metal structures subjected to road loads and other customer uses has become very important. A process has been developed to provide design direction based upon peak loads, simultaneous peak loads, and vehicle program analytical or measured loads. It identifies critical loads at each input location and load sets for multiple input locations, filters load time histories, selects critical areas and analyzes for fatigue life. Several case studies have been completed. The results show that the variations are consistent with the accuracies in finite element analysis, road load data acquisition, and fatigue calculation methods.
Technical Paper

Understanding the Interaction Between Passive Four Wheel Drive and Stability Control Systems

2002-03-04
2002-01-1047
The purpose of this paper is to describe and define the interaction between a brake based stability control system and a passive coupler (viscous coupling unit) inside the transfer case of a Four-Wheel Drive (4WD) vehicle. This paper will focus on the driveline system and the impact that a stability control system can have on it. It will provide understanding of torque transfer on 4WD vehicles that are equipped with a brake based stability control system and use this knowledge to recommend ways to reduce the undesirable torque transfer interaction between the two systems. These recommendations can be readily applied to future 4WD/AWD vehicles to improve compatibility between the two systems.
X