Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Vehicle Sound Package - Art or Science?

1972-02-01
720508
Sound package engineering has always been an art developed through experience and much subjective road testing. Because the problem is complex, it is essential to have a logical procedure to achieve the most efficient sound package. The quiet car concept is proposed as a solution. Additionally, a plea is made for relevant automobile-oriented material test procedures to be recognized industry-wide.
Technical Paper

Vehicle Exhaust Particle Size Distributions: A Comparison of Tailpipe and Dilution Tunnel Measurements

1999-05-03
1999-01-1461
This paper explores the extent to which standard dilution tunnel measurements of motor vehicle exhaust particulate matter modify particle number and size. Steady state size distributions made directly at the tailpipe, using an ejector pump, are compared to dilution tunnel measurements for three configurations of transfer hose used to transport exhaust from the vehicle tailpipe to the dilution tunnel. For gasoline vehicles run at a steady 50 - 70 mph, ejector pump and dilution tunnel measurements give consistent results of particle size and number when using an uninsulated stainless steel transfer hose. Both methods show particles in the 10 - 100 nm range at tailpipe concentrations of the order of 104 particles/cm3.
Technical Paper

Vehicle Body Structure Durability Analysis

1995-04-01
951096
Due to several indeterminate factors, the assessment of the durability performance of a vehicle body is traditionally accomplished using test methods. An analytical fatigue life prediction method (four-step durability process) that relies mainly on numerical techniques is described in this paper. The four steps comprising this process include the identification of high stress regions, recognizing the critical load types, determining the critical road events and calculation of fatigue life. In addition to utilizing a general purpose finite element analysis software for the application of the Inertia Relief technique and a previously developed fatigue analysis program, two customized programs have been developed to streamline the process into an integrated, user-friendly tool. The process is demonstrated using a full body, finite element model.
Technical Paper

Variables Influencing Shoulder Belt Positioning of Four Point Safety Belts

2001-03-05
2001-01-0382
The purpose of this study was to determine the optimal location of the shoulder belts for a suspender style four-point safety belt system. This optimal location must satisfy two conditions. First, the shoulder belts must properly fit over the occupant’s shoulders for safety performance. Second, the shoulder belts location on the occupant’s body must be acceptable to the occupant. To determine the optimal acceptable location of the shoulder belts, forty-four subjects were recruited by height and tested in a reconfigurable test seat. The results showed that avoiding an interaction between the shoulder belts and the occupant’s neck improved the acceptability of the system. Variables that affected this interaction included the horizontal and vertical position of the shoulder belts and the occupant’s weight, clothing, and gender.
Technical Paper

Variability of Hybrid III Clearance Dimensions within the FMVSS 208 and NCAP Vehicle Test Fleets and the Effects of Clearance Dimensions on Dummy Impact Responses

1995-11-01
952710
Locations of key body segments of Hybrid III dummies used in FMVSS 208 compliance tests and NCAP tests were measured and subjected to statistical analysis. Mean clearance dimensions and their standard deviations for selected body segments of driver and passenger occupants with respect to selected vehicle surfaces were determined for several classes of vehicles. These occupant locations were then investigated for correlation with impact responses measured in crash tests and by using a three dimensional human-dummy mathematical model in comparable settings. Based on these data, the importance of some of the clearance dimensions between the dummy and the vehicle surfaces was determined. The study also compares observed Hybrid III dummy positions within selected vehicles with real world occupant positions reported in published literature.
Technical Paper

Using CAE to Guide Passenger Airbag Door Design for Optimal Head Impact Performance

1997-02-24
970772
The increased focus on occupant protection by automobile manufacturers combined with incessant consumer demand for safety features such as dual airbags has posed design engineers with major challenges in the field of Instrument Panel (IP) design. Typically, airbags are designed to deploy when the speed of the automobile is above 13 mph in a frontal impact. The airbag door should meet head impact requirements for unbelted occupants involved in low speed impacts (<15mph) when airbags are not deployed. This paper describes how computer aided engineering (CAE) simulation techniques were used in improving the design of the passenger airbag door of a full size van for head impact performance. Fewer tests were conducted primarily for validation, which resulted in significantly less prototypes, costs and time.
Technical Paper

Use of FCRASH in a Door Openability Simulation

1997-04-08
971526
During frontal and rear end type collisions, very large forces will be imparted to the passenger compartment by the collapse of either front or rear structures. NCAP tests conducted by NHTSA involve, among other things, a door openability test after barrier impact. This means that the plastic/irreversible deformations of door openings should be kept to a minimum. Thus, the structural members constituting the door opening must operate during frontal and rear impact near the elastic limit of the material. Increasing the size of a structural member, provided the packaging considerations permit it, may prove to be counter productive, since it may lead to premature local buckling and possible collapse of the member. With the current trend towards lighter vehicles, recourse to heavier gages is also counterproductive and therefore a determination of an optimum compartment structure may require a number of design iterations. In this article, FEA is used to simulate front side door behavior.
Technical Paper

Upper Neck Response of the Belt and Air Bag Restrained 50th Percentile Hybrid III Dummy in the USA's New Car Assessment Program

1998-11-02
983164
Since 1994, the New Car Assessment Program (NCAP) of the National Highway Traffic Safety Administration (NHTSA) has compiled upper neck loads for the belt and air bag restrained 50th percentile male Hybrid III dummy. Over five years from 1994 to 1998, in frontal crash tests, NCAP collected upper neck data for 118 passenger cars and seventy-eight light trucks and vans. This paper examines these data and attempts to assess the potential for neck injury based on injury criteria included in FMVSS No. 208 (for the optional sled test). The paper examines the extent of serious neck injury in real world crashes as reported in the National Automotive Sampling System (NASS). The results suggest that serious neck injuries do occur at higher speeds for crashes involving occupants restrained by belts in passenger cars.
Technical Paper

Two New Areas Concerning Side impact Protection for Passenger Car Occupants

1987-05-01
871114
In vehicle crash accidents, approximately 27% to 30% of passenger car occupant casualties are attributed to side impact accidents. The annual death toll in side impacts for passenger car occupants reached 9,000 in 1975 and 1976 and has been between 7,000 and 8,000 in the 1980's. Since 1977, the National Highway Traffic Safety Administration (NHTSA) and many other groups have conducted a significant amount of research on occupant side impact protection with emphasis on thorax injury reduction. Three important problem areas in the side impact are (1) thorax-to-side interior impact, (2) head impacts with A-pillar/roof rail components and (3) occupant ejection through side doors/windows. While the first problem area has been thoroughly studied, the remaining two areas are seldom discussed and less well understood. Therefore, they are relatively new areas to many people.
Technical Paper

Traffic Safety Trends and Forecasts

1984-04-01
840880
Motor vehicle fatalities are expected to continue their long term upward trend for the remainder of the 1980 decade to an annual rate of approximately 50,000 by 1990. The assumptions upon which this projection is based include a greater number of vehicles and drivers, increased travel and a higher rate of economic growth. Although the absolute number of fatalities is expected to increase, private and public safety efforts will result in a continuing decline in fatality risks per unit of travel.
Technical Paper

Traffic Related Disabilities and Impairments and Their Economic Consequences

1986-02-24
860505
A study was made of the incidence of traffic related injuries, the related disability and impairment, and the resulting economic consequences. Crash data covering the incidence of injuries and their distribution by injury type and severity show that nearly three and a half million persons per year are injured in traffic crashes, with roughly half of them experiencing at least one day of disability. Brain and spinal cord injuries, both believed to have long term consequences, were examined in greater detail. Epidemiological data covering these injuries indicate about 60,000 persons suffer disabling brain injuries and about 4,000 persons suffer disabling spinal cord injuries each year. These are significantly larger incidence values for these two injury types than shown by the crash data. There is little quantatative data on the disability and impairment resulting from traffic crashes, nor is there agreement on how to report such data.
Technical Paper

Thoracic Trauma Assessment Formulations for Restrained Drivers in Simulated Frontal Impacts

1994-11-01
942206
Sixty-three simulated frontal impacts using cadaveric specimens were performed to examine and quantify the performance of various contemporary automotive restraint systems. Test specimens were instrumented with accelerometers and chest bands to characterize their mechanical responses during the impact. The resulting thoracic injury severity was determined using detailed autopsy and was classified using the Abbreviated Injury Scale. The ability of various mechanical parameters and combinations of parameters to assess the observed injury severities was examined and resulted in the observation that belt restraint systems generally had higher injury rates than air bag restraint systems for the same level of mechanical responses. To provide better injury evaluations from observed mechanical parameters without prior knowledge of what restraint system was being used, a dichotomous process was developed.
Technical Paper

Thoracic Response of Belted PMHS, the Hybrid III, and the THOR-NT Mid-Sized Male Surrogates in Low-Speed, Frontal Crashes

2006-11-06
2006-22-0009
Injury to the thorax is the predominant cause of fatalities in crash-involved automobile occupants over the age of 65, and many elderly-occupant automobile fatalities occur in crashes below compliance or consumer information test speeds. As the average age of the automotive population increases, thoracic injury prevention in lower severity crashes will play an increasingly important role in automobile safety. This study presents the results of a series of sled tests to investigate the thoracic deformation, kinematic, and injury responses of belted post-mortem human surrogates (PMHS, average age 44 years) and frontal anthropomorphic test devices (ATDs) in low-speed frontal crashes. Nine 29 km/h (three PMHS, three Hybrid III 50th% male ATD, three THOR-NT ATD) and three 38 km/h (one PMHS, two Hybrid III) frontal sled tests were performed to simulate an occupant seated in the right front passenger seat of a mid-sized sedan restrained with a standard (not force-limited) 3-point seatbelt.
Technical Paper

Theoretical Evaluation of the Requirements of the 1999 Advanced Airbag SNPRM – Part One: Design Space Constraint Analysis

2001-03-05
2001-01-0165
In the 1999 Supplemental Notice for Proposed Rulemaking (SNPRM) for Advanced Airbags, the National Highway Traffic Safety Administration (NHTSA) sought comments on the maximum speed at which the high-speed, unbelted occupant test suite will be conducted, i.e., 48 kph vs. 40 kph. To help address this question, an analysis of constraints was performed via extensive mathematical modeling of a theoretical restraint system. First, math models (correlated with several existing physical tests) were used to predict the occupant responses associated with 336 different theoretical dual-stage driver airbag designs subjected to six specific Regulated and non-Regulated tests.
Technical Paper

The Strain Gauge Goniometer, a New Sensor to Measure Dummy Joint Angles Under Crash Conditions

2000-03-06
2000-01-0058
The paper describes the use of strain gauge goniometers to measure dummy leg joint angles in impact tests. The instruments have been developed based on regular goniometers used for human gait analysis. Specific modifications enhanced the mechanical stability and the electrical insulation of the sensors. They are now compatible with standard crash data acquisition systems. Several vehicle crash tests have been analyzed using the goniometers as a supplementary measurement device. Due to its low weight, the device does not significantly alter the dummy behavior. Further areas of application are outlined in the paper.
Technical Paper

The SISAME Methodology for Extraction of Optimal Lumped Parameter Structural Crash Models

1992-02-01
920358
The SISAME methodology is a system for extracting one-dimensional lumped parameter vehicle crash models from non-oblique crash test data, and for simulation of such models. Model extraction is based on constrained least squares optimization of an overdetermined system of target equations for the model parameters. The SISAME computer program performs extraction and simulation with a number of features that allow user control of the computations and outputs. Additional computer programs perform data assessment/correction and filtering. Experience has shown that the SISAME methodology can efficiently produce predictively useful models that accurately capture the motions of the actual crash event. The essential formulation of SISAME and some sample applications are presented in this paper.
Technical Paper

The Role of Skull Fractures in Short Duration Head Impacts

1987-02-23
870321
Head injuries are considered a significant safety problem for vehicle occupants involved in vehicle crashes. Although medical literature on the subject is extensive, the emphasis is mainly on the clinical and studies frequently involve data samples that are not representative to the vehicle occupant population. Also, research efforts on head injury have focused on the head rotational acceleration mechanism. The effect of head contact on brain injuries has not been adequately acknowledged and there has been disagreement regarding skull fracture and its relationship to brain injury. The human head, being an extremely complex structure, has many independent injury modes which cannot be described satisfactorily by a single brain injury mechanism. Many individual pathophysiological disturbances to the skull and its contents together comprise head injuries.
Technical Paper

The New Ford Aeromax and Louisville Heavy Trucks: A Case Study in Applying Polar Plot Techniques to Vehicle Design

1995-11-01
952658
One of the major goals in the design of the new Ford Aeromax and Louisville heavy truck product line was to achieve competitive leadership in visibility. Market research found that visibility was an important issue to the heavy truck driver. Visibility is defined as both direct and indirect (i.e., the driver's ability to see with and without the use of supplemental vision devices such as mirrors) and both interior and exterior. The scope of this paper includes the work which was accomplished in evaluating direct and indirect exterior visibility and the resulting vehicle design which achieved Ford's leadership goals. Poor weather visibility and interior vision are beyond the scope of this paper. Polar Plots were the method of choice in the Aeromax/Louisville visibility studies. Industry acceptance of these techniques has been established in the recent approval of SAE J1750, “Evaluating the Truck Driver's Viewing Environment”.
Technical Paper

The New Car Assessment Program:Five Star Rating System and Vehicle Safety Performance Characteristics

1995-02-01
950888
In the New Car Assessment Program (NCAP), beginning with the model year 1994 vehicles, the National Highway Traffic Safety Administration (NHTSA) developed and adopted a simplified nonnumeric format for presenting the comparative frontal crashworthiness safety information to consumers. This paper presents the basis for the development of this “star rating” system. The injury probability functions which are used for the star rating system are also applied to the results of the recent NCAP real-world correlation studies and a review of these studies is given. The safety performance for restrained occupants as measured in NCAP is dependent on several parameters which include: the design of the restraint system, the maintenance of the integrity of the occupant space, and the energy management performance of the front structure.
Technical Paper

The New Car Assessment Program Has It Led to Stiffer Light Trucks and Vans over the Years?

1999-03-01
1999-01-0064
Since model year 1983, one hundred and seventy five light trucks, vans, and sport utility vehicles (LTVs) have been included in the New Car Assessment Program (NCAP) frontal crash tests. In this frontal test, vehicles are crashed at 35 mph such that the entire front impacts against a rigid, fixed barrier. Instrumented anthropometric dummies are placed in the driver and right front passenger seats. Accelerometers are placed on the vehicle to record the response of the structure during the crash. A number of recent papers have examined the compatibility of LTVs and cars in vehicle-to-vehicle collisions. The studies in these papers, generally, consider three factors for vehicle-to-vehicle compatibility: (1) mass, (2) stiffness, and (3) geometry. On June 5, 1998, Transport Canada and the National Highway Traffic Safety Administration held a forum entitled “Transport-NHTSA International Dialogue on Vehicle Compatibility,” in Windsor, Canada.
X