Refine Your Search

Search Results

Viewing 1 to 3 of 3
Journal Article

The True Definition and Measurement of Oversteer and Understeer

2015-04-14
2015-01-1592
The concept of vehicle understeer and oversteer has been well studied and equations, test methods, and test results have been published for many decades. This concept has a specific definition in the steady-state driving range as opposed to quantification in highly transient limit handling events. There have been specific test procedures developed and employed by automotive engineers for decades on how to quantify understeer. These include the constant radius method, the constant steering wheel angle/variable speed method, the constant speed/ variable radius method, and the constant speed/variable steer method. These methods are very good for calculating the understeer gradient but care must be taken in interpreting the result at the limits of tire traction since lateral tire forces can be reduced on a drive axle when significant throttle is applied.
Technical Paper

Technical Analysis of Severe Cornering Induced Tire Wear on Vehicle Limit Handling through Repeatable On-Track Vehicle Testing

2018-04-03
2018-01-0558
In repeated physical testing of vehicles at or near their handling limit, tire shoulder wear occurs that is not typical of normal customer use. It has been observed for decades that this type of severe cornering induced tire wear can have a significant effect on the force and moment characteristics of tires. In this study, the severe cornering wear effect was studied by testing vehicles in a highly controlled manner using a robot steering controller. This testing shows how vehicle response to the exact same steering input changes significantly as the number of runs on the same tires accumulates. In fact, vehicles were found to not lift tires from the ground in initial runs then tip-up hard onto outriggers in later runs as the tires are abraded. Additionally, for one vehicle configuration an additional run was made with tires that had accumulated 16,000 km (10,000 miles) of normal customer usage.
Technical Paper

A Technical Analysis of a Proposed Theory on Tire Tread Belt Separation-Induced Axle Tramp

2011-04-12
2011-01-0967
Recently, papers have been published purporting to study the effect of rear axle tramp during tread separation events, and its effect on vehicle handling [1, 2]. Based on analysis and physical testing, one paper [1] has put forth a mathematical model which the authors claim allows vehicle designers to select shock damping values during the development process of a vehicle in order to assure that a vehicle will not experience axle tramp during tread separations. In the course of their work, “lumpy” tires (tires with rubber blocks adhered to the tire's tread) were employed to excite the axle tramp resonance, even though this method has been shown not to duplicate the physical mechanisms behind an actual tread belt separation. This paper evaluates the theories postulated in [1] by first analyzing the equations behind the mathematical model presented. The model is then tested to see if it agrees with observed physical testing.
X