Refine Your Search

Search Results

Viewing 1 to 7 of 7
Technical Paper

Use of Plastic Trim Fasteners for Automotive Trimming Applications

2017-03-28
2017-01-1304
For many years, the use of in-mold fasteners has been avoided for various reasons including: not fully understanding the load cases in the part, the fear of quality issues occurring, the need for servicing, or the lack of understanding the complexity of all failure modes. The most common solution has been the use of secondary operations to provide attachments, such as, screws, metal clips, heat staking, sonic welding or other methods which are ultimately a waste in the process and an increase in manufacturing costs. The purpose of this paper is to take the reader through the design process followed to design an in-molded attachment clip on plastic parts. The paper explores the design process for in-molded attachment clips beginning with a design concept idea, followed by basic concept testing using a desktop 3D printer, optimizing the design with physical tests and CAE analysis, and finally producing high resolution 3D prototypes for validation and tuning.
Technical Paper

Statistical Energy Analysis Applications for Structureborne Vehicle NVH

2010-10-17
2010-36-0526
Statistical Energy Analysis (SEA) is an established high-frequency analysis technique for generating acoustic and vibration response predictions in the automotive, aerospace, machinery, and ship industries. SEA offers unique NVH prediction and target-setting capabilities as a design tool at early stages of vehicle design where geometry is still undefined and evolving and no prototype hardware is available yet for testing. The exact frequencies at which SEA can be used effectively vary according to the size and the amount of damping in the vehicle subsystems; however, for automotive design the ability to predict acoustic and vibration responses due to both airborne and structure-borne sources has been established to frequencies of 500 Hz and above. This paper presents the background, historical use, and current industrial applications of structure-borne SEA. The history and motivation for the development of structure-borne SEA are discussed.
Technical Paper

SAE J3168: A Joint Aerospace-Automotive Recommended Practice for Reliability Physics Analysis of Electrical, Electronic and Electromechanical Components

2019-04-02
2019-01-1252
This paper describes a joint SAE automotive and aerospace Recommended Practice SAE J3168 now in development to standardize a process for Reliability Physics Analysis. This is a science-based approach to implement Physics-of-Failure research in conducting durability simulations in a Computer Aided Engineering Environment. It is used to calculate failure mechanism susceptibilities and estimate the likelihood of failure and the expected durability life of Electrical, Electronic and Electromechanical components and equipment, due to stresses such as mechanical shock, vibration, temperature cycling, etc. Reliability Physics Analysis is based on the material science principle of stress driven damage accumulation in materials. The process enables the identification of potential failure risks early in the design phase so that such risks can be designed out in order to efficiently design high reliable and robustness into electronic products.
Technical Paper

Redesign of an Exhaust Manifold Outlet Fastener Using Robust Design Techniques

2000-03-06
2000-01-0917
An L16 orthogonal array parameter Design of Experiment (DOE) evaluated six design parameters of the mating thread interface between the exhaust manifold outlet flange and jointing stainless steel fastener. The objective of this study was to identify optimal parameters for the redesign the thread interface by ensuring 100% seating of the fastener into the manifold flange (here after referred to as stud seating). Since the current fastener and manifold outlet flange interface threads do not always achieve the design objectives, due in part to a form of abrasive wear, consideration was given to develop a testing strategy that would quantify the amount of remaining thread engagement for a given stud length. This testing strategy ensured that the control parameters considered in this experiment would reveal main effects and interactions between the stud and tapped hole threads thus providing the necessary parameters for the redesign on the joint threads.
Technical Paper

LNT+SCR Catalyst Systems Optimized for NOx Conversion on Diesel Applications

2011-04-12
2011-01-0305
A laboratory study was performed to assess the effectiveness of LNT+SCR systems for NOx control in lean exhaust. The effects of the catalyst system length and the spatial configuration of the LNT & SCR catalysts were evaluated for their effects on the NOx conversion, NH₃ yield, N₂O yield, and HC conversion. It was found that multi-zone catalyst architectures with four or eight alternating LNT and SCR catalyst zones had equivalent gross NOx conversion, lower NH₃ and N₂O yield, and significantly higher net conversion of NOx to N₂ than an all-LNT design or a standard LNT+SCR configuration, where all of the SCR volume is placed downstream of the LNT. The lower NH₃ emissions of the two multi-zone designs relative to the standard LNT+SCR design were attributed to the improved balance of NOx and NH₃ in the SCR zones.
Journal Article

Effect of Biodiesel (B20) on Vehicle-Aged Engine Oil Properties

2010-10-25
2010-01-2103
High concentrations of diesel fuel can accumulate in the engine oil, especially in vehicles equipped with diesel particle filters. Fuel dilution can decrease the viscosity of engine oil, reducing its film thickness. Higher concentrations of fuel are believed to accumulate in oil with biodiesel than with diesel fuel because biodiesel has a higher boiling temperature range, allowing it to persist in the sump. Numerous countries are taking actions to promote the use of biodiesel. The growing interest for biodiesel has been driven by a desire for energy independence (domestically produced), the increasing cost of petroleum-derived fuels, and an interest in reducing greenhouse gas emissions. Biodiesel can affect engine lubrication (through fuel dilution), as its physical and chemical properties are significantly different from those of petrodiesel. Many risks associated with excessive biodiesel dilution have been identified, yet its actual impact has not been well quantified.
Technical Paper

Computational Aeroacoustics of Mufflers for Exhaust Air Rush Prediction and Experimental Validation

2017-03-28
2017-01-1311
Air rush noise is exhaust gas driven flow-induced noise in the frequency range of 500-6500 Hz. It is essential to understand the flow physics of exhaust gases within the mufflers in order to identify any counter measures that can attenuate this error state. This study is aimed at predicting the flow physics and air rush noise of exhaust mufflers in the aforementioned frequency range at a typical exhaust flow rate and temperature. The study is performed on two different muffler designs which show a significant air rush noise level difference when tested on the vehicle. The transient computational study was performed using DES with 2nd order spatial discretization and 2nd order implicit scheme for temporal discretization in StarCCM+. To compare with test data, a special flow test stand is designed so that all high and low frequency contents emanating from the engine are attenuated before the flow enters the test part.
X