Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

World Radio Revisited: Still a Myth?

1990-02-01
900040
As in most industries, car radio designers have long envisioned a product which could be sold without modification throughout the world. However, local requirements, performance differences, and customer preferences have presented major obstacles to achieving this goal. Since publishing a previous paper on this subject in 1983, many changes have taken place in electronics and in car radio design. Some of these changes have reduced the barriers to producing a “World Radio” while others have presented new obstacles to be overcome. This paper addresses some of those changes and the current possibilities.
Technical Paper

Wind Noise and Drag Optimization Test Method for Sail-Mounted Exterior Mirrors

2003-05-05
2003-01-1702
An L18 Taguchi-style Design of Experiments (DOE) with eight factors was used to optimize exterior mirrors for wind noise and drag. Eighteen mirror properties were constructed and tested on a full size greenhouse buck at the Lockheed low-speed wind tunnel in Marietta, GA. Buck interior sound data and drag measurements were taken at 80 MPH wind speed (0° yaw angle). Key wind noise parameters were the fore/aft length of mirror housing and the plan view angle of the mirror housing's inboard surface. Key drag parameters were the fore/aft length of the mirror housing, the cross-section shape of the mirror pedestal, and the angle of the pedestal (relative to the wind).
Technical Paper

Wheel Torque-Based Control: Transmission Input Torque Determination and Inertia Compensation

2022-03-29
2022-01-0733
Traditionally, the controls system in production vehicles with automatic transmission interprets the driver’s accelerator pedal position as a demand for transmission input torque. However, with the advent of electrified vehicles, where actuators are located at different positions in the drivetrain, and of autonomous vehicles, which are self-driving, it is more convenient to interpret the demand (either human or virtual) in vehicle acceleration or wheel torque domain. To this end, a Wheel Torque-based longitudinal Control (WTC) framework was developed, wherein demands can be converted accurately between the vehicle acceleration or wheel torque domain and the transmission assembly input torque domain.
Technical Paper

Wheel Dust Measurement and Root Cause Assessment

2003-10-19
2003-01-3341
North American drivers particularly dislike wheel dust (brake dust on their wheels). For some vehicle lines, customer surveys indicate that wheel dust is a significant concern. For this reason, Ford and its suppliers are investigating the root causes of brake dust and developing test procedures to detect wheel dust issues up-front. Intuitively, it would appear that more brake wear would lead to more wheel dust. To test this hypothesis, a gage was needed to quantitatively measure the wheel dust. Gages such as colorimeters were evaluated to measure the brightness (L*) of the wheel, which ranged from roughly 70-80% (clean) to 10-20% (very dirty). Gage R&R's and subjective ratings by a panel of 30 people were used to validate the wheel dust gages. A city traffic vehicle test and an urban dynamometer procedure were run to compare the level of wheel dust for 10 different lining types on the same vehicle.
Technical Paper

Wavelet-Based Visualization, Separation, and Synthesis Tools for Sound Quality of Impulsive Noises

2003-05-05
2003-01-1527
Recent applied mathematics research on the properties of the invertible shift-invariant discrete wavelet transform has produced new ways to visualize, separate, and synthesize impulsive sounds, such as thuds, slaps, taps, knocks, and rattles. These new methods can be used to examine the joint time-frequency characteristics of a sound, to select individual components based on their time-frequency localization, to quantify the components, and to synthesize new sounds from the selected components. The new tools will be presented in a non-mathematical way illustrated by two real-life sound quality problems, extracting the impulsive components of a windshield wiper sound, and analyzing a door closing-induced rattle.
Technical Paper

Wavelet-Based Visualization of Impulsive and Transient Sounds in Stationary Background Noise

2001-04-30
2001-01-1475
Scalograms based on shift-invariant orthonormal wavelet transforms can be used to analyze impulsive and transient sounds in the presence of more stationary sound backgrounds, such as wind noise or drivetrain noise. The visual threshold of detection for impulsive features on the scalogram (signal energy content vs. time and frequency,) is shown to be similar to the audible threshold of detection of the human auditory system for the corresponding impulsive sounds. Two examples of impulsive sounds in a realistic automotive sound background are presented: automotive interior rattle in a vehicle passenger compartment, and spark knock recorded in an engine compartment.
Technical Paper

Water Avoidance Design Strategy for Capacitive Exterior Handles

2020-01-13
2019-36-0187
Nowadays, capacitive handles are increasing their use in high-end commercial vehicles. This particular handle applies a technology that permits to unlock and even lock the vehicle without a key. As benefit for current life, the customer has the possibility to access and close the vehicles more efficiently and faster, just possessing the key in the pocket or any close compartment that the user is carrying, for example, bag, purse, backpack. Even though, the design of capacitive exterior handle must follow several design strategies to avoid nonfunctional in rainy climate. Water could work as a blocker for the sensor signal captured, special design strategies that must be taken in order to minimize that the liquid could ingress the handle and even be retained on the region that sensor is located.
Technical Paper

Vision Based Object Distance Estimation

2017-03-28
2017-01-0109
This work describes a single camera based object distance estimation system. As technology on vehicles is constantly advancing on the road to autonomy, it is critical to know the locations of objects in 3D space for safe behavior of the vehicle. Though significant progress has been made on object detection in 2D sensor space from a single camera, this work additionally estimates the distance to said object without requiring stereo vision or absolute knowledge of vehicle motion. Specifically, our proposed system is comprised of three modules: vision based ego-motion estimation, object-detection, and distance estimation. In particular, we compensate for the vehicle ego-motion by using pin-hole camera model to increase the accuracy of the object distance estimation.
Technical Paper

Virtual Exhaust Gas Temperature Measurement

2017-03-28
2017-01-1065
Exhaust temperature models are widely used in the automotive industry to estimate catalyst and exhaust gas temperatures and to protect the catalyst and other vehicle hardware against over-temperature conditions. Modeled exhaust temperatures rely on air, fuel, and spark measurements to make their estimate. Errors in any of these measurements can have a large impact on the accuracy of the model. Furthermore, air-fuel imbalances, air leaks, engine coolant temperature (ECT) or air charge temperature (ACT) inaccuracies, or any unforeseen source of heat entering the exhaust may have a large impact on the accuracy of the modeled estimate. Modern universal exhaust gas oxygen (UEGO) sensors have heaters with controllers to precisely regulate the oxygen sensing element temperature. These controllers are duty cycle based and supply more or less current to the heating element depending on the temperature of the surrounding exhaust gas.
Technical Paper

Verification of Driver Status Monitoring Camera Position Using Virtual Knowledge-Based Engineering

2023-04-11
2023-01-0090
A DMS (Driver Monitoring System) is one of the most important safety features that assist in the monitoring functions and alert drivers when distraction or drowsiness is detected. The system is based in a DSMC (Driver Status Monitoring Camera) mounted in the vehicle's dash, which has a predefined set of operational requirements that must be fulfilled to guarantee the correct operation of the system. These conditions represent a trade space analysis challenge for each vehicle since both the DSMC and the underlying vehicle’s requirements must be satisfied. Relying upon the camera’s manufacturer evaluation for every iteration of the vehicle’s design has proven to be time-consuming, resources-intensive, and ineffective from the decision-making standpoint.
Technical Paper

Verification of Accelerated PM Loading for DPF Qualification Studies

2009-04-20
2009-01-1089
High gas prices combined with demand for improved fuel economy have prompted increased interest in diesel engine applications for both light-duty and heavy-duty vehicles. The development of aftertreatment systems for these vehicles requires significant investments of capital and time. A reliable and robust qualification testing procedure will allow for more rapid development with lower associated costs. Qualification testing for DPFs has its basis in methods similar to DOCs but also incorporates a PM loading method and regeneration testing of loaded samples. This paper examines the effects of accelerated loading using a PM generator and compares PM generator loaded DPFs to engine dynamometer loaded samples. DPFs were evaluated based on pressure drop and regeneration performance for samples loaded slowly and for samples loaded under accelerated conditions. A regeneration reactor was designed and built to help evaluate the DPFs loaded using the PM generator and an engine dynamometer.
Technical Paper

Vehicle-to-Vehicle Communication using AppLink

2015-09-22
2015-36-0271
With the increasing number of cars on the street, the exchange of information between those cars becomes essential to improve the driving skills of each driver, resulting in a safer, intelligent and more dynamic traffic. The task now is to make it accessible for everyone. One possible and cheap way to solve this issue is to seek possibilities on free technologies within market trends. Using the smartphone platforms, which holds a high level of embedded technologies, becoming a global communication device even to interpersonal and to social networks, and AppLink Development Kit for smartphones and vehicles integration, this paper will cover aspects about the integration of the kit to an database application based on the cloud, enabling real-time interaction between two cars. Making possible to a driver have access to information and current status of other cars to aid ones life on heavy traffic.
Technical Paper

Vehicle Telematics Platform Using Multipath TCP

2018-04-03
2018-01-0753
The problem that we are trying to solve is how an application on telematics platform can utilize multiple network interfaces available in different electronic control units (ECU’s) in the vehicle efficiently. Although this appears to be a similar problem facing the application on the smartphone, it differs considerably in many scenarios and needs. When the vehicle is in motion, network interface availability is transient; this poses unique challenges for utilizing the available networks effectively. And also vehicle employs a power mode strategy to ensure that the battery is not drained, implying time available after ignition-off is limited. To address seamless connectivity for automotive platforms that are generally supported with multiple network interfaces, we are considering Multipath TCP (MPTCP).
Technical Paper

Vehicle System Modeling for Computer-Aided Chassis Control Development

2005-04-11
2005-01-1432
As the complexity of automotive chassis control systems increases with the introduction of technologies such as yaw and roll stability systems, processes for model-based development of chassis control systems becomes an essential part of ensuring overall vehicle safety, quality, and reliability. To facilitate such a model-based development process, a vehicle modeling framework intended for chassis control development has been created. This paper presents a design methodology centered on this modeling framework which has been applied to real world driving events and has demonstrated its capability to capture vehicle dynamic behavior for chassis control development applications.
Journal Article

Vehicle System Control Software Validation for the Dual Drive Hybrid Powertrain

2009-04-20
2009-01-0736
Through the use of hybrid technology, Ford Motor Company continues to realize enhanced vehicle fuel economy while meeting customer performance and drivability targets. As is characteristic of all Ford Hybrid Electric Vehicles (HEVs), the basis for resolving these competing requirements resides with its Vehicle System Control (VSC) strategy. This strategy implements complex high-level executive controls to coordinate and optimize the desired operational state of the major HEV powertrain subsystems. To ensure that the VSC software meets its intended functionality, a software validation process developed at Research and Advanced Engineering has been integrated as part of the vehicle controls development process. In this paper, this VSC software validation process implemented for a next generation hybrid powertrain is presented. First, an overview of the hybrid powertrain application and the VSC software architecture is introduced.
Technical Paper

Vehicle Seat Occupancy Detection and Classification Using Capacitive Sensing

2024-04-09
2024-01-2508
Improving passenger safety inside vehicle cabins requires continuously monitoring vehicle seat occupancy statuses. Monitoring a vehicle seat’s occupancy status includes detecting if the seat is occupied and classifying the seat’s occupancy type. This paper introduces an innovative non-intrusive technique that employs capacitive sensing and an occupancy classifier to monitor a vehicle seat’s occupancy status. Capacitive sensing is facilitated by a meticulously constructed capacitance-sensing mat that easily integrates with any vehicle seat. When a passenger or an inanimate object occupies a vehicle seat equipped with the mat, they will induce variations in the mat’s internal capacitances. The variations are, in turn, represented pictorially as grayscale capacitance-sensing images (CSI), which yield the feature vectors the classifier requires to classify the seat’s occupancy type.
Journal Article

Vehicle Safety Communications - Applications: System Design & Objective Testing Results

2011-04-12
2011-01-0575
The USDOT and the Crash Avoidance Metrics Partnership-Vehicle Safety Communications 2 (CAMP-VSC2) Consortium (Ford, GM, Honda, Mercedes, and Toyota) initiated, in December 2006, a three-year collaborative effort in the area of wireless-based safety applications under the Vehicle Safety Communications-Applications (VSC-A) Project. The VSC-A Project developed and tested communications-based vehicle safety systems to determine if Dedicated Short Range Communications (DSRC) at 5.9 GHz, in combination with vehicle positioning, would improve upon autonomous vehicle-based safety systems and/or enable new communications-based safety applications.
Journal Article

Vehicle Safety Communications - Applications: Multiple On-Board Equipment Testing

2011-04-12
2011-01-0586
The United States Department of Transportation (USDOT) and the Crash Avoidance Metrics Partnership-Vehicle Safety Communications 2 (CAMP-VSC2) Consortium (Ford, General Motors, Honda, Mercedes-Benz, and Toyota) initiated, in December 2006, a three-year collaborative effort in the area of wireless-based safety applications under the Vehicle Safety Communications-Applications (VSC-A) Project. The VSC-A Project developed and tested Vehicle-to-Vehicle (V2V) communications-based safety systems to determine if Dedicated Short Range Communications (DSRC) at 5.9 GHz, in combination with vehicle positioning, would improve upon autonomous vehicle-based safety systems and/or enable new communications-based safety applications.
Journal Article

Vehicle Powertrain Thermal Management System Using Model Predictive Control

2016-04-05
2016-01-0215
An advanced powertrain cooling system with appropriate control strategy and active actuators allows greater flexibility in managing engine temperatures and operating near constraints. An organized controls development process is necessary to allow comparison of multiple configurations to select the best way forward. In this work, we formulate, calibrate and validate a Model Predictive Controller (MPC) for temperature regulation and constraint handling in an advanced cooling system. A model-based development process was followed; where the system model was used to develop and calibrate a gain scheduled linear MPC. The implementation of MPC for continuous systems and the modification related to implementing switching systems has been described. Multiple hardware configurations were compared with their corresponding control system in simulations. The system level requirements were translated into MPC calibration parameters for consistent comparison between multiple configurations.
Technical Paper

Vehicle NVH Evaluations and NVH Target Cascading Considerations for Hybrid Electric Vehicles

2015-06-15
2015-01-2362
The increasing trend toward electric and hybrid-electric vehicles (HEVs) has created unique challenges for NVH development and refinement. Traditionally, characterization of in-vehicle powertrain noise and vibration has been assessed through standard operating conditions such as fixed gear engine speed sweeps at varied loads. Given the multiple modes of operation which typically exist for HEVs, characterization and source-path analysis of these vehicles can be more complicated than conventional vehicles. In-vehicle NVH assessment of an HEV powertrain requires testing under multiple operating conditions for identification and characterization of the various issues which may be experienced by the driver. Generally, it is necessary to assess issues related to IC engine operation and electric motor operation (running simultaneously with and independent of the IC engine), under both motoring and regeneration conditions.
X