Refine Your Search



Search Results

Technical Paper

Use of Plastic Trim Fasteners for Automotive Trimming Applications

For many years, the use of in-mold fasteners has been avoided for various reasons including: not fully understanding the load cases in the part, the fear of quality issues occurring, the need for servicing, or the lack of understanding the complexity of all failure modes. The most common solution has been the use of secondary operations to provide attachments, such as, screws, metal clips, heat staking, sonic welding or other methods which are ultimately a waste in the process and an increase in manufacturing costs. The purpose of this paper is to take the reader through the design process followed to design an in-molded attachment clip on plastic parts. The paper explores the design process for in-molded attachment clips beginning with a design concept idea, followed by basic concept testing using a desktop 3D printer, optimizing the design with physical tests and CAE analysis, and finally producing high resolution 3D prototypes for validation and tuning.
Technical Paper

Up-Front Body Structural Designs for Squeak and Rattle Prevention

Squeak and rattle is one of the major concerns in vehicle design for customer satisfaction. Traditionally squeak and rattle problems are found and fixed at a very late design stage due to lack of up-front CAE prevention and prediction tools. A research work at Ford reveals a correlation between the squeak and rattle performance and diagonal distortions at body closure openings and fastener accelerations in an instrument panel. These findings make it possible to assess squeak and rattle performance implications between different body designs using body-in-prime (B-I-P) and vehicle low frequency noise, vibration and harshness (NVH) CAE models at a very early design stage. This paper is concerned with applications of this squeak and rattle assessment method for up-front body designs prior to a prototype stage.
Technical Paper

Torque Angle Signature Analysis of Joints with Thread Rolling Screws and Unthreaded Weld Nuts

Bolted joint separation occurs when components of a joint are no longer capable of maintaining a clamp load. The clamp load of a joint is the resultant of various factors such as the strength of joining components, geometry, and the surface condition of the joined parts. The fastener installation torque is a very critical parameter that contributes towards achieving the desired clamping force at the joint during the assembly process. Thread rolling screws are increasingly being used in many automotive structural applications. The thread rolling screws are easy to install, are self aligning, and offer a torque prevailing feature with improved vibration resistance when mated with a un-threaded nut. This combination results in a robust joint and low field costs. They also offer increased joint strength by work hardening the mating nut interface.
Technical Paper

Ting Noise Generation in Automotive Applications

Automobile customers are looking for higher performance and quieter comfortable rides. The driveline of a vehicle can be a substantial source of NVH issues. This paper provides an understanding of a driveline noise issue which can affect any variant of driveline architecture (FWD, AWD, RWD and 4X4). This metallic noise is mostly present during the take-off and appropriately termed as ting noise. This noise was not prevalent in the past. For higher fuel economy, OEMs started integrating several components for lighter subsystems. This in effect made the system more sensitive to the excitation. At present the issue is addressed by adding a ting washer in the interface of the wheel hub bearings and the halfshafts. This paper explains the physics behind the excitation and defines the parameters that influence the excitation. The halfshaft and the wheel hub are assembled with a specified hub nut torque.
Journal Article

Thermal Response of Aluminum Engine Block During Thermal Spraying of Bores: Comparison of FEA and Thermocouple Results

Thermally sprayed coatings have used in place of iron bore liners in recent aluminum engine blocks. The coatings are steel-based, and are sprayed on the bore wall in the liquid phase. The thermal response of the block structure determines how rapidly coatings can be applied and thus the investment and floor space required for the operation. It is critical not to overheat the block to prevent dimensional errors, metallurgical damage, and thermal stress cracks. This paper describes an innovative finite element procedure for estimating both the substrate temperature and residual stresses in the coating for the thermal spray process. Thin layers of metal at a specified temperature, corresponding to the layers deposited in successive thermal spray torch passes, are applied to the substrate model, generating a heat flux into the block. The thickness, temperature, and application speed of the layers can be varied to simulate different coating cycles.
Technical Paper

The USAMP Magnesium Powertrain Cast Components Project

Over the past five years, the US Automotive Materials Partnership (USAMP) has brought together representatives from DaimlerChrysler, General Motors, Ford Motor Company and over 40 other participant companies from the Mg casting industry to create and test a low-cost, Mg-alloy engine that would achieve a 15 - 20 % Mg component weight savings with no compromise in performance or durability. The block, oil pan, and front cover were redesigned to take advantage of the properties of both high-pressure die cast (HPDC) and sand cast Mg creep- resistant alloys. This paper describes the alloy selection process and the casting and testing of these new Mg-variant components. This paper will also examine the lessons learned and implications of this pre-competitive technology for future applications.
Technical Paper

The Current State of Worldwide Standards for Ferrous Castings

Technical Standards are essential for the expanded use of any engineering material. The Society of Automotive Engineers (SAE) Iron and Steel Castings Committee has been reworking existing, (and issuing new), standards for automotive iron and steel castings. This paper will review the status of the SAE standards for Ductile Iron, Austempered Ductile Iron (ADI), Compacted Graphite Iron (CGI) and high Silicon-Molybdenum (Si-Mo) Ductile Iron, Gray Iron and Steel Castings. The SAE Standards, (and draft standards), will be critically compared to those for ASTM and ISO. Salient differences in the standards will be discussed and implications to design engineers will be addressed. Comparisons to other, competitive materials (and their standards) will be made.
Technical Paper

The Application of Magnesium Die Casting to Vehicle Closures

During the last decade, advances in magnesium die casting technology have enabled the production of large lightweight thin walled die castings that offer new approaches for low investment body construction techniques. As a result, many OEMs have expressed an interest in magnesium door closure systems due to investment reduction opportunities, coupled with potential weight savings of up to 50%. However, for such applications, product engineers are faced with the challenge of designing for stiffness and strength in crash critical applications with a material of lower modulus and ductility compared to wrought sheet product. Concept designs for side door systems have been presented in the literature, and indicate that structural performance targets can be achieved. However, to date, series production designs feature a multitude of supplementary sheet metal reinforcements, attached to die castings, to handle structural loads.
Technical Paper

System Level Durability Engineering in CAE

This paper will discuss the vehicle top-down design approach that includes the non-linearity and sub-system interactions such as tire and road, (left and right) interaction between two or more parts connected by bushings, springs, bolts, stabilizer-bar, etc… The proposed method would allow for the inclusion of realistic boundary conditions and proper load simulation, and it would provide the ability to visualize and evaluate dynamic structural phenomena and complex component interaction. This approach would also facilitate the evaluation of design changes that may affect load propagation and/or load magnitude. All of the advantages of the sub-system analysis method mentioned above would allow for a greater understanding of the sub-system as a whole and help correctly identify the design requirements needed for the individual components that make up such chassis subsystems.
Journal Article

Stress-Corrosion Cracking Evaluation of Hot-Stamped AA7075-T6 B-Pillars

High-strength aluminum alloys such as 7075 can be formed using advanced manufacturing methods such as hot stamping. Hot stamping utilizes an elevated temperature blank and the high pressure stamping contact of the forming die to simultaneously quench and form the sheet. However, changes in the thermal history induced by hot stamping may increase this alloy’s stress corrosion cracking (SCC) susceptibility, a common corrosion concern of 7000 series alloys. This work applied the breaking load method for SCC evaluation of hot stamped AA7075-T6 B-pillar panels that had been artificially aged by two different artificial aging practices (one-step and two-step). The breaking load strength of the specimens provided quantitative data that was used to compare the effects of tensile load, duration, alloy, and heat treatment on SCC behavior.
Technical Paper

Static and Fatigue Performance of Fusion Welded Uncoated DP780 Coach Joints

Typical automotive joints are lap, coach, butt and miter joints. In tubular joining applications, a coach joint is common when one tube is joined to another tube without the use of brackets. Various fusion joining processes are popular in joining coach joints. Common fusion joining processes are Gas Metal Arc Welding (GMAW), Laser and Laser Hybrid, and Gas Tungsten arc welding (GTAW). In this study, fusion welded 2.0 mm uncoated DP780 steel coach joints were investigated. Laser, Gas metal arc welding (GMAW), and laser hybrid (Laser + GMAW) welding processes were selected. Metallurgical properties of the DP780 fusion welds were evaluated using optical microscopy. Static and fatigue tests were conducted on these joints for all three joining processes. It was found that joint fit-up, type of welding process, and process parameters, especially travel speed, have significant impact on static and fatigue performance of the coach joints in this study.
Journal Article

Reliability Evaluation of Thin, Lightweight Laminates for Windshield Applications

The use of lightweight materials to produce automotive glazing is being pursued by vehicle manufacturers in an effort to improve fuel economy. As glazing’s become thinner, reduced rigidity means that the critical flaw size needed to create fracture becomes much smaller due to increased strain under load or impact. This paper documents experiments focused on the impact performance of several alternative thin laminate constructions under consideration for windshield applications (including conventional annealed soda-lime glass as well as laminates utilizing chemically strengthened glass), for the purpose of identifying new and unique failure modes that result from thickness reduction. Regulatory impact tests and experiments that focused on functional performance of laminates were conducted. Given the increased sensitivity to flaw size for thin laminates, controlled surface damage was introduced to parts prior to conducting the functional performance tests.
Technical Paper

Redesign of an Exhaust Manifold Outlet Fastener Using Robust Design Techniques

An L16 orthogonal array parameter Design of Experiment (DOE) evaluated six design parameters of the mating thread interface between the exhaust manifold outlet flange and jointing stainless steel fastener. The objective of this study was to identify optimal parameters for the redesign the thread interface by ensuring 100% seating of the fastener into the manifold flange (here after referred to as stud seating). Since the current fastener and manifold outlet flange interface threads do not always achieve the design objectives, due in part to a form of abrasive wear, consideration was given to develop a testing strategy that would quantify the amount of remaining thread engagement for a given stud length. This testing strategy ensured that the control parameters considered in this experiment would reveal main effects and interactions between the stud and tapped hole threads thus providing the necessary parameters for the redesign on the joint threads.
Technical Paper

Progress Toward a Magnesium-Intensive Engine: The USAMP Magnesium Powertrain Cast Components Project

The US Automotive Materials Partnership (USAMP) and the US Department of Energy launched the Magnesium Powertrain Cast Components Project in 2001 to determine the feasibility and desirability of producing a magnesium-intensive engine; a V6 engine with a magnesium block, bedplate, oil pan, and front cover. In 2003 the Project reached mid-point and accomplished a successful Decision Gate Review for entry into the second half (Phase II) of the Project. Three tasks, comprising Phase I were completed: (1) evaluation of the most promising low-cost, creep-resistant magnesium alloys, (2) design of the engine components using the properties of the optimized alloys and creation of cost model to assess the cost/benefit of the magnesium-intensive engine, and (3) identification and prioritization of scientific research areas deemed by the project team to be critical for the use of magnesium in powertrain applications.
Journal Article

Predicting Stress vs. Strain Behaviors of Thin-Walled High Pressure Die Cast Magnesium Alloy with Actual Pore Distribution

In this paper, a three-dimensional (3D) microstructure-based finite element modeling method (i.e., extrinsic modeling method) is developed, which can be used in examining the effects of porosity on the ductility/fracture of Mg castings. For this purpose, AM60 Mg tensile samples were generated under high-pressure die-casting in a specially-designed mold. Before the tensile test, the samples were CT-scanned to obtain the pore distributions within the samples. 3D microstructure-based finite element models were then developed based on the obtained actual pore distributions of the gauge area. The input properties for the matrix material were determined by fitting the simulation result to the experimental result of a selected sample, and then used for all the other samples’ simulation. The results show that the ductility and fracture locations predicted from simulations agree well with the experimental results.
Technical Paper

One piece hot formed AB ring reinforcement

The usage of Boron steel in the South American automotive industry has been increasing in recent years. Considering its high hardening properties, sheet metal parts can only be manufactured using a hot forming process, as compared to a conventional cold forming process; however, the hot stamping process offers the advantage to stamp a part in a single die vs. multiple dies using a regular cold stamping process. The main objective is to present the advantages of constructing the whole AB ring reinforcement out of Boron steel and made out of a single die, and no welding among the A pillar reinforcement, B Pillar reinforcement and rocker panel. This type of design has helped to achieve crash safety performance goals, enhance the structural characteristics of joints, improve dimensional control, reduce the number of welds, manage BIW overall weight and improve torsion rigidity.
Technical Paper

Numerical Analysis of Thermal Growth of Cast Aluminum Engine Components

As-cast or as-solution treated cast aluminum A319 has copper solutions within its aluminum dendrite. These copper solutions precipitate out to form Al2Cu through a sequence of phase changes and bring with them volume changes at elevated temperatures. These volume changes, referred to as thermal growth are irreversible. The magnitude of thermal growth at a material point is decided by the temperature history of the material point. When an under aged or non heat treated cast aluminum is exposed to non-uniform temperature such as that during engine operation, thermal growth leads to non-uniform volume change and thus additional self balanced stresses. These stresses remain inside material as residual stresses even when the temperature of the material is uniform again. In the present paper, numerical analysis method for thermal growth is developed and integrated into engine operation analysis.
Technical Paper

Multisensory Contributions to Perceived Quality and Authenticity of Materials for the Vehicle Interior

Material authenticity is an important factor for appearance and perceived quality of the vehicle interior. The term authenticity implies ambivalence: For the product designer, it means identification and trueness of the origin of the material. The customers, however, can only access information on the nature of the materials via their own perception of surface features. Thus, the intended authenticity of a material always needs to be conveyed by its surface. Specific cases illustrate the context: 1. The customer touches a part of known matter, but various layers prevent from directly touching the natural material: e.g. leather at the steering wheel, applications of wood. 2. Perception of a thin surface layer indicates authentic material, which is not fulfilled by the whole part: e.g. plastic parts plated with metal. 3. A part consists of authentic material, but newly composed, so that it is not easily identified, such as recycled materials, e.g. leather fiber layers for seats.
Technical Paper

Methodology for Determination and Optimization of Bolted Joints

In order to optimize the development of bolted joints used to components attachments in the Sidemember of commercial vehicles, the joints development has become relevant to better definition of the fasteners size, eliminating overweight and avoiding under or super-sized. This paper presents a development sequential approach of bolted joints applied on commercial vehicles ensuring the correct specifications usage of the fasteners and the joint to keep their clamp force. The evaluations were conducted based on theoretical and practical aspects applied on products and in the definition of all elements contained in a joint. The calculation methodology was developed based on standardized bolts and forces generated through the reactions of the components required for each vehicle family.