Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

SP-100 Position Multiplexer and Analog Input Processor

1992-08-03
929233
This paper describes the design, implementation, and performance test results of an engineering model of the Position Multiplexer (MUX)-Analog Input Processor (AIP) System for the transmission and continuous measurements of Reflector Control Drive position in SP-100. The specially tailored MUX-AIP combination multiplexes the sensor signals and provides an increase in immunity from low frequency interference by translating the signals up to a higher frequency band. The modulated multiplexed signals are transmitted over a single twisted shielded cable pair from the reflector drives located near reactor to the AIP located at the power conditioning/system controller end of the space craft boom. There the signals are demultiplexed and processed by the AIP, eliminating the need for individual cables for each of the twelve position sensors across the boom.
Technical Paper

Progress in SP-100 Tribological Coatings

1992-08-03
929235
The SP-100 reactor will operate at temperatures up to 1500K in high vacuum. Development of bearing coatings is necessary to avoid self welding and/or galling of moving components. No experience base exists for these conditions-the early SNAP (Space Nuclear Auxiliary Power) program requirements were over 400K lower with shorter lifetime requirements. To address the SP-100 needs, a tribology development program has been established at GE to investigate candidate coating materials. Materials were selected based on their high thermodynamic stability, high melting point, compatibility with the substrate, and coefficients of thermal expansion similar to niobium-1% zirconium - the candidate structural material for SP-100. An additional requirement was that the deposition processes should be commercially available to coat large components.
Technical Paper

Inspection of Turbine Blades Using Computer Aided Laser Technology

1980-09-01
801173
Measurement of dimensional characteristics of airfoil parts is primarily a manual, labor intensive operation. It employs a wide variety of gages that vary from very expensive optical comparitors to inexpensive pin gages. An automatic non-contacting inspection gage capable of measuring most dimensional characteristics would be cost effective, simplify inspection operations, consolidate a number of gages into one, and improve overall inspection reliability by minimizing human involvement. This paper presents the results of the design and development of a demonstrator semi-automatic laser gage dimensional inspection system that addresses this problem.
Technical Paper

High Temperature Turbine Design Considerations

1971-02-01
710462
The major technological developments which have made possible the trend towards higher temperatures in modern aircraft gas turbine engines are discussed. The relative importance of manufacturing processes, material developments, cooling techniques, analytical design procedures, rupture and cyclic life considerations, and aerodynamic and mechanical design improvements are discussed along with illustrative examples and technical data. The need for a balanced design approach is stressed, and examples are given where trade-offs can be made. It is noted that the advances in aircraft engines during the last 10 years have been based on the evolution of sound engineering principles, extensive component and engine development, and careful consideration of the operational requirements rather than a tremendous breakthrough or revolutionary concept in any one area.
X