Refine Your Search

Topic

Search Results

Technical Paper

Wet Oxidation for Space Waste Management

1968-10-07
680714
Long term multimanned space missions present numerous complex problems in devising a suitable life support system. Among these problems is the management of the waste Products generated during the mission. A promising approach appears to be the wet oxidation process wherein the organic waste materials are decomposed at high pressures (50 atm or higher) and intermediate temperatures (100 - 300 C). This technique is promising because: effluent may be used as a nutrient media, and thermodynamically it is exothermic. Problems associated with the adoption of this approach to waste management are amenable to experimental investigation and resolution.
Technical Paper

Transmission Considerations for Gas Turbines

1972-02-01
720169
The effects of transmission selection on the performance and fuel economy of a gas turbine powered automobile are analyzed. Both single-shaft and two-shaft turbines are considered. Examples are given of fuel economy for an urban cycle, and performance of these engines with an infinitely variable transmission and with a power shift automatic transmission. The primary conclusions are that the infinitely variable transmission is necessary for a single-shaft engine and highly desirable for a two-shaft engine, and the use of an infinitely variable transmission with the single-shaft turbine eliminates any need for the wider output speed range of a two-shaft engine.
Technical Paper

Thin Film Permeable Membranes for Inert Gas Generation

1974-02-01
740855
A new ultrathin-backed semipermeable membrane has been developed which shows considerable promise as a gas separator for engine bleed air to provide nitrogen-rich air for aircraft fuel tank inerting. The membrane is a silicone, polycarbonate copolymer of 1500 Å effective thickness, deposited on a reinforced porous backing. The selective removal of oxygen provides oxygen concentrations of less than 9% in the inerting gas. Small-scale testing demonstrated that the backed membranes are suitable in the aircraft environment. A system using such membranes avoids the logistic and service requirements of tanked liquid nitrogen.
Technical Paper

The Marine Gas Turbine for the 1990's and Beyond

1987-07-01
871378
This paper discusses the technology, components and systems incorporated in the design of the LM1600 I/CR marine gas turbine propulsion system as well as describing some of the novel and imaginative ways that the highly acclaimed F404 fighter aircraft engine has been modified and adapted to provide the nucleus for this sophisticated marine propulsion system. Specifically, the modifications to the compressors, the high and low pressure turbines and the power turbine design characteristics are described. The proven materials technology from the highly successful LM2500 marine gas turbine has been applied to this engine as well.
Technical Paper

The GE Electric Vehicle

1968-02-01
680430
This paper discusses some of the objectives, results, and implications of GE's electric vehicle and component systems developments to date. The experimental vehicle is covered in detail. The vehicle's styling, construction, materials, power system, operating costs, and performance are discussed with some alternatives and attendant economic considerations. The paper also presents a brief discussion of the power system requirements, performance, and economics of several potential electric vehicles as well as a critique of the potential power sources presently announced as having promise for electric vehicle propulsion. The paper includes pictures, tables, and graphs describing the experimental vehicle and illustrating the points discussed relative to other potential vehicles, power systems, batteries, and fuel cells.
Technical Paper

Storable Fuel Cell Powerplants for Undersea Applications

1969-02-01
690729
Storable powerplants are needed in many applications of submerged ocean systems. On the basis of cost effectiveness alone, it is shown that storable fuel cell powerplants for fixed and slowly moving mobile systems offer significant advantages over a range from 0.005 to 30 kW in the mission energy range from 0.01 to 100 megawatt-hr. Analysis of high pressure gaseous storage (compatible with deep submergence hulls) shows significant fuel storage volume advantages over storage of cryogenic hydrogen and oxygen. A unique hybrid fuel storage system, using LOX and high pressure hydrogen at LOX temperature shows reduced displacement, compared to both gaseous and pure cryogenic systems, for modest endurance periods. Long term storage involves substantial volume penalties for cryogenic reactants. High pressure gas storage may, however, be substantially excelled on a storage volume basis by solid reagents used to produce hydrogen and oxygen for the fuel cell as needed.
Technical Paper

Selection Factors for VTOL Powerplants

1962-01-01
620479
This paper presents the effect of certain powerplant characteristics which must be considered in selecting the engine for a VTOL airplane. Selection factors discussed include: power matching, disc loading, aircraft control provisions, weight trades, and transition. The interrelationship of propulsion and airplane characteristics are based on subsonic considerations with emphasis on VTOL rather than STOL. The discussion is applicable to engines for VTOL aircraft of 0.3 to 0.9 Mach number and of the fixed wing category. Powerplant selection for VTOL demands timely attention to many details not existing in conventional aircraft.
Technical Paper

SP-100 Thermoelectric Converter Technology Development

1992-08-03
929311
As part of the SP-100 Space Reactor Power System Program being undertaken for the U. S. Department of Energy, GE is developing a thermoelectric (T/E) power converter which utilizes reactor delivered heat and transforms it into usable electric power by purely static means. This converter is based to GE's product line of successful thermoelectric space power systems. The SP-100 power converter embodies the next generation improvement over the type of T/E converter successfully flown on the six U. S. space missions. That is, conduction coupling of T/E cell to both the heat source and the heat rejection elements. The current technology utilizes radiation coupling in these areas. The conduction coupling technique offers significant improvements in system specific power since it avoids the losses associated with parasitic ΔT's across the radiation gap between the heat source and the hot junction of the thermoelectric (T/E) cell.
Technical Paper

SP-100 Position Multiplexer and Analog Input Processor

1992-08-03
929233
This paper describes the design, implementation, and performance test results of an engineering model of the Position Multiplexer (MUX)-Analog Input Processor (AIP) System for the transmission and continuous measurements of Reflector Control Drive position in SP-100. The specially tailored MUX-AIP combination multiplexes the sensor signals and provides an increase in immunity from low frequency interference by translating the signals up to a higher frequency band. The modulated multiplexed signals are transmitted over a single twisted shielded cable pair from the reflector drives located near reactor to the AIP located at the power conditioning/system controller end of the space craft boom. There the signals are demultiplexed and processed by the AIP, eliminating the need for individual cables for each of the twelve position sensors across the boom.
Technical Paper

SP-100 Nuclear Subsystem Hardware and Testing

1992-08-03
929309
The term “SP-100” is synonymous with a set of technologies that can be utilized to provide long lifetime, reliable, safe space power over the range of kilowatts to megawatts [1] using a nuclear reactor as the heat source. This paper describes recent development progress in a number of technology areas such as fuel, materials, reactivity control mechanisms and sensors. Without exception, excellent technical progress is being accomplished in all areas under development to optimize spacecraft performance characteristics.
Technical Paper

SP-100 Early Flight Mission Designs

1992-08-03
929447
Early flight mission objectives can be met with a Space Reactor Power System (SRPS) using thermoelectric conversion in conjunction with fast spectrum, lithium-cooled reactors. This paper describes two system design options using thermoelectric technology to accommodate an early launch. In the first of these options, radiatively coupled Radioisotope Thermoelectric Generator (RTG) unicouples are adapted for use with a SP-100-type reactor heat source (Deane 1992). Unicouples have been widely used as the conversion technology in RTGs and have demonstrated the long-life characteristics necessary for a highly reliable SRPS (Hemler 1992). The thermoelectric leg height is optimized in conjunction with the heat rejection temperature to provide a mass optimum 6-kWe system configured for launch on a Delta II launch vehicle. The flight-demonstrated status of this conversion technology provides a high confidence that such a system can be designed, assembled, tested, and launched by 1996.
Technical Paper

SP-100 Controller Development Paradigm

1992-08-03
929232
To facilitate the development of the Space Reactor Power System (SRPS) controller, a rapid prototyping and multi-phased development methodology is being utilized. The rapid prototyping environment used in the development models both the controller and the system being controlled. Since the validation of the SRPS control strategies is a long lead activity to ensure the required safety and control features, the SRPS controller development is carried out in phases, starting with normal modes of operation and followed by transient and off-normal modes. In every phase, the rapid prototyping of the control strategies is used (1) to establish well-defined controller requirements, (2) to perform fast identification of changes and refinement of the strategies, and (3) to conduct in-phase correction and optimization of the strategy and component development.
Technical Paper

Reinforced Thermoplastic Composites in Transportation Applications

1988-02-01
880153
An acceleration of metal replacement to reinforce thermoplastic composites is positioned to impact the transportation markets through a joint venture between PPG Industries and GE Plastics, called AZDEL, Inc. The strength of both companies' strong technological base in glass and engineering thermoplastic resins is the key. The resulting long continuous glass thermoplastic composites have high strength to weight ratios, provide tough durable products, facilitate combining functions in design, and because of its high speed manufacturing processes, is cost effective. In addition, these materials can be post fabricated during the assembly phase, easily repaired and conveniently recycled. Value added secondary operations for both the captive or custom molders provide another avenue for cost reductions.
Technical Paper

Re-Establishment of RTG Unicouple Production

1992-08-03
929481
The approach that was utilized to start up and requalify manufacture of the thermoelectric unicouple devices for the Cassini RTG (Radioisotope Thermoelectric Generator) program are described in this paper. Key elements involved in this effort were: engineering review of specifications; training of operators; manufacturing product verification runs; and management review of results. Appropriately, issues involved in activating a fabrication process that has been idle for nearly a decade, such as upgrading equipment, adhering to updated environmental, health, and safety requirements, or approving new vendors, are also addressed. The cumulative results of the startup activities have verified that a production line for this type of device can be reopened successfully.
Technical Paper

Quiet Clean Short-Haul Experimental Engine (QCSEE) Design Rationale

1975-02-01
750605
The principal design features of the NASA QCSEE UnderThe-Wing and Over-The-Wing powered lift propulsion systems are given. In the UTW engine, these include noise reduction features, a variable pitch low pressure ratio fan, a fan drive reduction gear, an advanced core and low pressure turbine with a low pollution combustor, a digital control, and advanced composite construction for the inlet, fan frame, fan exhaust duct, and variable area fan exhaust nozzle. The OTW engine is similar but has higher fan pressure and a fixed pitch fan. Both engines are scheduled to be fabricated and tested starting in 1976.
Technical Paper

Progress in SP-100 Tribological Coatings

1992-08-03
929235
The SP-100 reactor will operate at temperatures up to 1500K in high vacuum. Development of bearing coatings is necessary to avoid self welding and/or galling of moving components. No experience base exists for these conditions-the early SNAP (Space Nuclear Auxiliary Power) program requirements were over 400K lower with shorter lifetime requirements. To address the SP-100 needs, a tribology development program has been established at GE to investigate candidate coating materials. Materials were selected based on their high thermodynamic stability, high melting point, compatibility with the substrate, and coefficients of thermal expansion similar to niobium-1% zirconium - the candidate structural material for SP-100. An additional requirement was that the deposition processes should be commercially available to coat large components.
Technical Paper

Optimizing the Design of the Battery-Starter/Generator System

1971-02-01
710392
Aircraft starting and generating systems heretofore have been largely the result of joining together available components. Recent studies have demonstrated that substantial benefits in weight, cost, size, and performance may be realized through a total system approach. This paper identifies the types of information required, and the methods of system analysis employed, to design an optimized system.
Technical Paper

New Turbofan Engines - F101 and TF34

1972-02-01
720841
The General Electric Company has recently been in the process of developing two new turbofan aircraft engines-the TF34 and the F101. The TF34 has been developed for the U.S. Navy's S-3A antisubmarine warfare aircraft and has been selected by Fairchild-Hiller for the U.S. Air Force A-10A; the F101 is being developed for the U.S. Air Force B-1 strategic bomber. Each of the new aircraft programs has the common requirement for subsonic endurance. The S-3A and A-10A requirements include subsonic operation only while the B-1 includes supersonic capability as well as subsonic. This basic mission-mix difference combined with major differences in engine/air vehicle installation features and different levels of technology applied due to the relative chronology in the respective development programs leads to contrasts in the design features of the major components of the engines.
Technical Paper

Lateral Joint Movement Capability - The Key to Durable Formed-In-Place Gasketing

1986-02-01
860626
A new silicone rubber formed-in-place gasketing concept has been developed which has greatly reduced the incidence of warranty oil leaks in engine and drive train components. This concept utilizes a combination of joint configuration and unique cured properties of the silicone formed-in-place gasketing material to achieve leak-free performance over the life of the component.
X