Refine Your Search

Topic

Author

Search Results

Technical Paper

The Modified Martempering and its Effect on the Impact Toughness of a Cold Work Tool Steel

2011-10-04
2011-36-0325
The so-called Modified Martempering discussed in this work differs from the standard martempering by that the temperature of the quenching bath is below the Ms point. In spite of the fact the lower temperature increases the severity of quenching, this also usually avoids the bainite formation, and by this reason, it is possible to make a fair comparison between different processes, which result in different microstructures. The present study shows the results in terms of mechanical properties, impact resistance in special of a cold work tool steel class, after being heat treated by the isothermal modified martempering process, as well as a comparison with the conventional quenching and tempering process and the austempering as well.
Technical Paper

The Immersed Boundary CFD Approach for Complex Aerodynamics Flow Predictions

2007-04-16
2007-01-0109
Standard CFD methods require a mesh that fits the boundaries of the computational domain. For a complex geometry the generation of such a grid is time-consuming and often requires modifications to the model geometry. This paper evaluates the Immersed Boundary (IB) approach which does not require a boundary-conforming mesh and thus would speed up the process of the grid generation. In the IB approach the CAD surfaces (in Stereo Lithography -STL- format) are used directly and this eliminates the surface meshing phase and also mitigates the process of the CAD cleanup. A volume mesh, consisting of regular, locally refined, hexahedrals is generated in the computational domain, including inside the body. The cells are then classified as fluid, solid and interface cells using a simple ray-tracing scheme. Interface cells, correspond to regions that are partially fluid and are intersected by the boundary surfaces.
Technical Paper

The Effect of Racetrack / High Energy Driving on Brake Caliper Performance

2006-04-03
2006-01-0472
It is well understood that conditions encountered during racetrack driving are amongst the most severe to which vehicle braking systems can be subjected. High braking pressure is combined with enormous energy input and high temperatures for multiple braking events. Brake fade, degradation of brake pedal feel, and brake lining taper/overall wear are common results of racetrack usage. This paper focuses on how racetrack and high energy driving-type conditioning affects the performance of the brake caliper - in particular, its ability to maintain an even pressure distribution at all of its interfaces (pad to rotor, piston to pad backing plate, and housing to pad backing plate).
Journal Article

Tensile Deformation and Fracture of TRIP590 Steel from Digital Image Correlation

2010-04-12
2010-01-0444
Quasi-static tensile properties of TRIP590 steels from three different manufacturers were investigated using digital image correlation (DIC). The focus was on the post-uniform elongation behavior which can be very different for steels of the same grade owing to different manufacturing processes. Miniature tensile specimens, cut at 0°, 45°, and 90° relative to the rolling direction, were strained to failure in an instrumented tensile stage. True stress-true strain curves were computed from digital strain gages superimposed on digital images captured from one gage section surface during tensile deformation. Microstructural phases in undeformed and fracture specimens were identified with optical microscopy using the color tint etching process. Fracture surface analyses conducted with scanning electron microscopy and energy dispersive spectroscopy were used to investigate microvoids and inclusions in all materials.
Technical Paper

TECH 1 Interactive Diagnostic Tester

1986-08-01
861108
Automotive electronic systems are becoming increasingly complex and servicing these systems is difficult and costly. These same electronics, however, when coupled with interactive diagnostic testers can provide opportunities for not only self-diagnosis but also for significantly improved overall vehicle diagnostic testing. General Motors has established a three-tiered system of diagnostic testing with Level I testing accomplished by on-board diagnostics and Levels II and III employing external test equipment utilizing a high degree of interactive diagnostic testing. A low cost handheld diagnostic tester called the TECH 1 has been developed to support Level II testing of GM vehicles by technicians in dealerships and aftermarket service centers.
Technical Paper

Study of Friction Reduction Potential in Light- Duty Diesel Engines by Lightweight Crankshaft Design Coupled with Low Viscosity Oil

2020-06-30
2020-37-0006
Over the last two decades, engine research was mainly focused on reducing fuel consumption in view of compliance with more stringent homologation cycles and customer expectations. As it is well known, the objective of overall engine efficiency optimization can be achieved only through the improvement of each element of the efficiency chain, of which mechanical constitutes one of the two key pillars (together with thermodynamics). In this framework, the friction reduction for each mechanical subsystem has been one of the most important topics of modern Diesel engine development. The present paper analyzes the crankshaft potential as contributor to the mechanical efficiency improvement, by investigating the synergistic impact of crankshaft design itself and oil viscosity characteristics (including new ultra-low-viscosity formulations already discussed by the author in [1]).
Technical Paper

Study of Friction Optimization Potential for Lubrication Circuits of Light-Duty Diesel Engines

2019-09-09
2019-24-0056
Over the last two decades, engine research has been mainly focused on reducing fuel consumption in view of compliance with stringent homologation targets and customer expectations. As it is well known, the objective of overall engine efficiency optimization can be achieved only through the improvement of each element of the efficiency chain, of which mechanical constitutes one of the two key pillars (together with thermodynamics). In this framework, the friction reduction for each mechanical subsystems has been one of the most important topics of modern Diesel engine development. In particular, the present paper analyzes the lubrication circuit potential as contributor to the mechanical efficiency improvement, by investigating the synergistic impact of oil circuit design, oil viscosity characteristics (including new ultra-low formulations) and thermal management. For this purpose, a combination of theoretical and experimental tools were used.
Journal Article

Scuffing Test Rig for Piston Wrist Pin and Pin Bore

2015-04-14
2015-01-0680
In practice, the piston wrist pin is either fixed to the connecting rod or floats between the connecting rod and the piston. The tribological behavior of fixed wrist pins have been studied by several researchers, however there have been few studies done on the floating wrist pin. A new bench rig has been designed and constructed to investigate the tribological behavior between floating pins and pin bore bearings. The experiments were run using both fixed pins and floating pins under the same working conditions. It was found that for fixed pins there was severe damage on the pin bore in a very short time (5 minutes) and material transfer occurs between the wrist pin and pin bore; however, for the floating pin, even after a long testing time (60 minutes) there was minimal surface damage on either the pin bore or wrist pin.
Technical Paper

Overview - Painted Aluminum Wheels

1986-12-08
862022
This paper discusses the recent growth in aluminum wheel popularity and the problems associated with maintaining the wheel's appearance and corrosion protection. The various options in wheel coatings are then described as well as the adverse wheel environment. Finally, the variables affecting wheel corrosion resistance are explained and the testing that is undertaken to evaluate the performance characteristics of the wheel coating.
Technical Paper

Lab-to-Lab Correlation for Tire Noise Load Cases

2003-05-05
2003-01-1533
The paper presented a correlation work between the GM and Goodyear acoustical laboratories to determine the tire noise load cases used for vehicle tire noise allocation and high-frequency airborne noise analysis. A large group of tires with different sizes were tested in the two labs to examine the lab-to-lab load cases differences in terms of near-field sound intensity and far-field sound power. A good agreement was found for the noise ranking between the two labs by 1/3 octave band and overall A-weighted sound intensity and sound power. The correction factors could be determined from one lab to another as well as from the near-field sound intensity to the far-field sound power. The discrepancies were investigated by comparing the two fixtures and two dyno shell profiles. The differences in 1/3 octave band sound measurement between the two labs were found to be contributed mainly by the shell profiles.
Technical Paper

Internal and Near-Nozzle Flow in a Multi-Hole Gasoline Injector Under Flashing and Non-Flashing Conditions

2015-04-14
2015-01-0944
A computational and experimental study was performed to characterize the flow within a gasoline injector and the ensuing sprays. The computations included the effects of turbulence, cavitation, flash-boiling, compressibility, and the presence of non-condensible gases. The flow domain corresponded to the Engine Combustion Network's Spray G, an eight-hole counterbore injector operating in a variety of conditions. First, a rate tube method was used to measure the rate of injection, which was then used to define inlet boundary conditions for simulation. Correspondingly, injection under submerged conditions was simulated for direct comparison with experimental measurements of discharge coefficient. Next, the internal flow and external spray into pressurized nitrogen were simulated under the base spray G conditions. Finally, injection under flashing conditions was simulated, where the ambient pressure was below the vapor pressure of the fuel.
Journal Article

Integration of Component Design Data for Automotive Turbocharger with Vehicle Fault Model Using JA6268 Methodology

2017-03-28
2017-01-1623
Suppliers and integrators are working with SAE’s HM-1 standards team to develop a mechanism to allow “Health Ready Components” to be integrated into larger systems to enable broader IVHM functionality (reference SAE JA6268). This paper will discuss how the design data provided by the supplier of a component/subsystem can be integrated into a vehicle reference model with emphasis on how each aspect of the model is transmitted to minimize ambiguity. The intent is to enhance support for the analytics, diagnostics and prognostics for the embedded component. In addition, we describe functionality being delegated to other system components and that provided by the supplier via syndicated web services. As a specific example, the paper will describe the JA6268 data submittal for a typical automotive turbocharger and other engine air system components to clarify the data modeling and integration processes.
Technical Paper

Impact of Ultra Thinwall Catalyst Substrates for TIER2 Emission Standards

2003-03-03
2003-01-0658
The impact of ultra thinwall catalysts on TIER2 emission performance, packaging and total system cost was evaluated. The primary focus was to compare ultra-thinwall and thinwall cell configurations (400/3, 400/4, 600/2, 600/3, 600/3 hex, 900/2, and 1200/2) with a baseline 600/4 at constant substrate volume, washcoat and PGM loading. Other areas investigated included the evaluation of decreasing catalyst volume while maintaining constant or increased mass transfer capabilities while holding washcoat and PGM loadings constant. The emissions impact of varying washcoat and PGM loading was measured on specific substrates, including a comparison of square to hex cell. Backpressure for each configuration was calculated with the Corning substrate pressure drop modeling tool. Converters were rapid aged on dynamometers reflecting approximately a 50,000 mile aged performance. Emission testing was completed using the FTP test cycle.
Technical Paper

HELS Based Acoustic Holographic Measurements to Evaluate Structure-Borne Noise

2007-05-15
2007-01-2281
General Motors (GM) recently purchased an acoustic holography system based on the Helmholtz Equation Least Squares (HELS) methodology. Typically acoustic holography has utilized planar transformation of the Fourier acoustic equations. General Motors conducted a variety of experiments on a simple well understood structure. This enabled us to understand the setup parameters and confirm the manufacturer's claims for accuracy. Measurements on the structure were taken using the HELS based equipment and a laser vibrometer. Conclusions are drawn on how to set up the equipment for future testing on vehicles.
Journal Article

Gasoline Anti-Knock Index Effects on Vehicle Net Power at High Altitude

2017-03-28
2017-01-0801
Automakers are designing smaller displacement engines with higher power densities to improve vehicle fuel economy, while continuing to meet customer expectations for power and drivability. The specific power produced by the spark-ignited engine is constrained by knock and fuel octane. Whereas the lowest octane rating is 87 AKI (antiknock index) for regular gasoline at most service stations throughout the U.S., 85 AKI fuel is widely available at higher altitudes especially in the mountain west states. The objective of this study was to explore the effect of gasoline octane rating on the net power produced by modern light duty vehicles at high altitude (1660 m elevation). A chassis dynamometer test procedure was developed to measure absorbed wheel power at transient and stabilized full power operation. Five vehicles were tested using 85 and 87 AKI fuels.
Technical Paper

Gaseous Hydrogen Station Test Apparatus: Verification of Hydrogen Dispenser Performance Utilizing Vehicle Representative Test Cylinders

2005-04-11
2005-01-0002
The paper includes the development steps used in creating a station test apparatus (STA) and a description of the apparatus design. The purpose of this device is to simulate hydrogen vehicle conditions for the verification of gaseous hydrogen refueling station dispenser performance targets and hydrogen quality. This is done at the refueling station/vehicle interface (i.e. the refueling nozzle.) In addition, the device is to serve as a means for testing and developing future advanced fueling algorithms and protocols. The device is to be outfitted with vehicle representative container cylinders and sensors located inside and outside the apparatus to monitor refueling rate, ambient and internal gas temperature, pressure and weight of fuel transferred. Data is to be recorded during refueling and graphed automatically.
Technical Paper

Experimental Characterization of the Unsteady Flow Field behind Two outside Rear View Mirrors

2008-04-14
2008-01-0476
The unsteady flow fields behind two different automobile outside side rear view mirrors were examined experimentally in order to obtain a comprehensive data base for the validation of the ongoing computational investigation effort to predict the aero-acoustic noise due to the outside rear view mirrors. This study is part of a larger scheme to predict the aero-acoustic noise due to various external components in vehicles. To aid with the characterization of this complex flow field, mean and unsteady surface pressure measurements were undertaken in the wake of two mirror models. Velocity measurements with particle image velocimetry were also conducted to develop the mean velocity field of the wake. Two full-scale mirror models with distinctive geometrical features were investigated.
Journal Article

Estimation of Elemental Composition of Diesel Fuel Containing Biodiesel

2013-10-14
2013-01-2600
Carbon, hydrogen and oxygen are major elements in vehicle fuels. Knowledge of fuels elemental composition is helpful in addressing its performance characteristics. Carbon, hydrogen and oxygen composition is an important parameter in engine calibration affecting vehicle performance, emissions and fuel economy. Biodiesel, a fuel comprised of mono-alkyl esters of long-chain fatty acids also known as Fatty Acid Methyl Esters(FAME), derived from vegetable oils or animal fats, has become an important commercial marketplace automotive fuel in the United States (US) and around the world over last few years. FAME biodiesels have many chemical and physical property differences compared to conventional petroleum based diesel fuels. Also, the properties of biodiesel vary based on the feedstock chosen for biodiesel production. One of the key differences between petroleum diesel fuels and biodiesel is the oxygen content.
Technical Paper

Enabling Powertrain Variants through Efficient Controls Development

2014-04-01
2014-01-1160
The paper examines how the issue of lengthy development times can be mitigated by adopting a multivariable physics based control method for the development and deployment of complex engine control algorithms required for modern diesel engines equipped with Lean NOx Trap aftertreatment technology. The proposed approach facilitates manufacturers to consider lower cost powertrain configurations for selected markets while maintaining higher performance configurations for other markets. The contribution includes on-engine results from joint work between General Motors and Honeywell. The Honeywell OnRAMP Design Suite which applies model predictive control techniques was used for model identification, control design (using model predictive control) and its calibration. With no prior work on the engine this process of calibrating an engine model and achieving transient drive cycle control on the engine required ten days in the test cell and five days of offline work using the OnRAMP software.
Technical Paper

Eliminating Caliper Piston Knock Back In High Performance Vehicles

2006-10-08
2006-01-3197
Powerful vehicles that are adequately designed to corner at high speeds can generate very high lateral forces at tire-road interface. These forces are counter balanced by chassis, suspension and brake components allowing the vehicle to confidently maneuver around a corner. Although these components may not damage under such high cornering loads, elastic deflections can significantly alter a vehicles performance. One such phenomenon is increased brake pedal travel, to engage brakes, after severe cornering maneuvers. Authors of this paper have worked together to solve exactly this problem on a very powerful luxury segment car.
X