Refine Your Search




Search Results

Journal Article

Virtual Tire Data Influence on Vehicle Level Handling Performance

This study presents the comparison of vehicle handling performance results obtained using physical test tire data and a tire model developed by means of Finite Element Method. Real tires have been measured in laboratory to obtain the tire force and moment curves in terms of lateral force and align torque as function of tire slip angle and vertical force. The same tire construction has been modeled with Finite Element Method and explicit formulation to generate the force and moment response curves. Pacejka Magic Formula tire response models were then created to represent these curves from both physical and virtual tires. In the sequence, these tire response models were integrated into a virtual multibody vehicle model developed to assess handling maneuvers.
Technical Paper

Vibro-Acoustic Analysis for Modeling Propeller Shaft Liner Material

In recent truck applications, single-piece large-diameter propshafts, in lieu of two-piece propshafts, have become more prevalent to reduce cost and mass. These large-diameter props, however, amplify driveline radiated noise. The challenge presented is to optimize prop shaft modal tuning to achieve acceptable radiated noise levels. Historically, CAE methods and capabilities have not been able to accurately predict propshaft airborne noise making it impossible to cascade subsystem noise requirements needed to achieve desired vehicle level performance. As a result, late and costly changes can be needed to make a given vehicle commercially acceptable for N&V performance prior to launch. This paper will cover the development of a two-step CAE method to predict modal characteristics and airborne noise sensitivities of large-diameter single piece aluminum propshafts fitted with different liner treatments.
Journal Article

Vehicle-Level EMC Modeling for HEV/EV Applications

Electromagnetic compatibility (EMC) is becoming more important in power converters and motor drives as seen in hybrid electric vehicles (HEV) to achieve higher reliability of the vehicle and its components. Electromagnetic interference (EMI) of the electronic components for a vehicle are evaluated and validated at a component-level test bench; however, it is sometimes observed that the EMI level of the components can be changed in a vehicle-level test due to differences in the vehicle's configuration (cable routing, connecting location etc.). In this presentation, a vehicle-level EMC simulation methodology is introduced to estimate radiated emissions from a vehicle. The comparison between the simulation and measurement results is also presented and discussed.
Technical Paper

Un-Controlled Generation Modelling and Analysis for Hybrid Vehicles

Interior permanent magnet machines are being widely used in hybrid vehicles owing to their compact size and high power density. Vehicle level application requires the motor to operate at high speed beyond the base speed of the motor. This is accomplished through flux weakening control. Nonfunctioning of inverter switches and/or gate driver circuit during flux weakening could give rise to a potential fault scenario called Un-Controlled Generation (UCG). This paper gives a detailed background of UCG and its impact on the high voltage and propulsion systems. In further sections the details related to modelling and analysis of UCG will be discussed. Finally, the paper will conclude with simulation results and comparison of the results with motor dynamometer test data.
Technical Paper

Trajectory-Tracking Control for Autonomous Driving Considering Its Stability with ESP

With rapid increase of vehicles on the road, safety concerns have become increasingly prominent. Since the leading cause of many traffic accidents is known to be by human drivers, developing autonomous vehicles is considered to be an effective approach to solve the problems above. Although trajectory tracking plays one of the most important roles on autonomous driving, handling the coupling between trajectory-tracking control and ESP under certain driving scenarios remains to be challenging. This paper focuses on trajectory-tracking control considering the role of ESP. A vehicle model is developed with two degrees of freedom, including vehicle lateral, and yaw motions. Based on the proposed model, the vehicle trajectory is separated into both longitudinal and lateral motion. The coupling effect of the vehicle and ESP is analyzed in the paper. The lateral trajectory-tracking algorithm is developed based on the preview follower theory.
Technical Paper

Tonal Annoyance Metric Development for Automotive Electric Vehicles

Historical metrics intended to drive the development of vehicle powertrains have focused on sounds that are characteristic of IC engines. The interior noise contribution of the propulsion system in electric vehicles has significantly more tonal noise (and much less impulsive and broadband noise) than their IC engine counterparts. This tonal noise is not adequately represented by current propulsion systems metrics. While metrics exist today that were developed to represent the presence of tones in sounds most have focused on the level aspect of the tones relative to the surrounding noise or masking level, some examples include tonality, tone-to-noise ratio, and prominence ratio. A secondary, but also important aspect of tones is the annoyance as a function of frequency. This paper will highlight the development of a tonal annoyance weighting curve that can be used to account for the frequency aspect of tonal annoyance relative to electric vehicles.

The Utility and Fuel Consumption of Hybrid and Electric Vehicles

There are now a wide variety of Hybrid and Electric Vehicles in or near production. They reduce or displace petroleum consumption with of various combinations of conventional IC engine, mechanical transmission, liquid fuel storage, electrical energy storage, electrical and electro-mechanical energy conversion, and vehicle-to-grid energy interface. These Electrified types of vehicles include Mild Hybrid, Full Hybrid, Plug-In Hybrid, Extended Range Electric, and Battery Electric. Some types differ in their actual usability for the real mixes of driving trips, and further that differ in their effectiveness to reduce or displace fuel in actual real world driving use. Vehicle size is also a factor in total vehicle utility in transporting people. If we may segment drivers by their driving needs, in each segment, we see a particular type of electrified vehicle that is better suited than others at minimizing fuel cost and petroleum consumption for the purposes of transporting people.
Journal Article

The Next Generation “Voltec” Extended Range EV Propulsion System

The Chevrolet Volt is an electric vehicle (EV) with extended-range (ER) that is capable of operation on battery power alone, and on power generated by an on-board gasoline engine after depletion of the battery charge. For 2016, GM has developed the next generation of the Volt vehicle and “Voltec” propulsion system. Building on the experience of the first generation Volt, the second generation targeted improved all-electric range, improved charge sustaining fuel economy, and improved performance. All of this was to be accomplished while maintaining the EV character of the first generation Volt which customers clearly valued. This paper describes the next generation “Voltec” system and the realized improvements in efficiency and performance. The features of the propulsion system components, including energy storage, transaxle, electric motors and power electronics, on-board charging, and engine are described and compared with the previous generation.
Technical Paper

The Modified Martempering and its Effect on the Impact Toughness of a Cold Work Tool Steel

The so-called Modified Martempering discussed in this work differs from the standard martempering by that the temperature of the quenching bath is below the Ms point. In spite of the fact the lower temperature increases the severity of quenching, this also usually avoids the bainite formation, and by this reason, it is possible to make a fair comparison between different processes, which result in different microstructures. The present study shows the results in terms of mechanical properties, impact resistance in special of a cold work tool steel class, after being heat treated by the isothermal modified martempering process, as well as a comparison with the conventional quenching and tempering process and the austempering as well.
Technical Paper

The Immersed Boundary CFD Approach for Complex Aerodynamics Flow Predictions

Standard CFD methods require a mesh that fits the boundaries of the computational domain. For a complex geometry the generation of such a grid is time-consuming and often requires modifications to the model geometry. This paper evaluates the Immersed Boundary (IB) approach which does not require a boundary-conforming mesh and thus would speed up the process of the grid generation. In the IB approach the CAD surfaces (in Stereo Lithography -STL- format) are used directly and this eliminates the surface meshing phase and also mitigates the process of the CAD cleanup. A volume mesh, consisting of regular, locally refined, hexahedrals is generated in the computational domain, including inside the body. The cells are then classified as fluid, solid and interface cells using a simple ray-tracing scheme. Interface cells, correspond to regions that are partially fluid and are intersected by the boundary surfaces.
Technical Paper

The Evolution of Microelectronics in Automotive Modules

It has the aim to discuss the evolution of electronics components, integrated circuits, new transistors concepts and associate its importance in the automotive modules. Today, the challenge is to have devices which consume less power, suitable for high-energy radiation environment, less parasitic capacitances, high speed, easier device isolation, high gain, easier scale-down of threshold voltage, no latch-up and higher integration density. The improvement of those characteristics mentioned and others in the electronic devices enable the automotive industry to have a more robust product and give the possibility to integrate new features in comfort, safety, infotainment and telematics modules. Finally, the intention is to discuss advanced structures, such as the silicon-on-insulator (SOI) and show how it affects the electronics modules applied for the automotive area.
Technical Paper

The Effect of Racetrack / High Energy Driving on Brake Caliper Performance

It is well understood that conditions encountered during racetrack driving are amongst the most severe to which vehicle braking systems can be subjected. High braking pressure is combined with enormous energy input and high temperatures for multiple braking events. Brake fade, degradation of brake pedal feel, and brake lining taper/overall wear are common results of racetrack usage. This paper focuses on how racetrack and high energy driving-type conditioning affects the performance of the brake caliper - in particular, its ability to maintain an even pressure distribution at all of its interfaces (pad to rotor, piston to pad backing plate, and housing to pad backing plate).
Technical Paper

The Development and Implementation of an Engine Off Natural Vacuum Test for Diagnosing Small Leaks in Evaporative Emissions Systems

This paper discusses an approach to detecting small leaks in an automobile's evaporative emissions systems that is a technique based upon ideal gas laws. It does this by monitoring pressure in the system while the vehicle's engine is off. This low cost solution can be easily implemented on General Motors vehicles using existing components. The topics covered in this paper include details on the background of the problem and the technique, the underlying thermodynamics of the technique, a description of the algorithm, testing and data collection considerations.
Technical Paper

The Design Concept of the Duramax 6600 Diesel Engine

A new Diesel engine, called the Duramax 6600 (Fig.1), has been designed by Isuzu Motors (Isuzu) for an upcoming full-size General Motors (GM) pickup truck. It incorporates the latest Diesel technology in order to improve on the inherent strengths of a Diesel engine, such as fuel economy, torque and reliability, while also producing higher output, smoother driveability, and lower noise. The Duramax 6600 is an entirely new 90° V8 direct injection (DI) intercooled engine with a water-cooled turbocharger. Its fuel injection system employs a fully electronically controlled common rail system that has high-pressure injection capabilities. Isuzu had the design responsibility of the base engine, while GM Truck Group was responsible for designing the installation and packaging within the vehicle. Engine validation relied on Isuzu's proven validation process, in addition to GM Powertrain's expertise in engine validation.
Technical Paper

Springback Prediction Using Combined Hardening Model

The main objective of this paper is to simulate the springback using combined kinematic/isotropic hardening model. Material parameters in the hardening model are identified by an inverse method. Three-point bending test is conducted on 6022-T4 aluminum sheet. Punch stroke, punch load, bending strain and bending angle are measured directly during the tests. Bending moments are then computed from these measured data. Bending moments are also calculated based on a constitutive model. Material parameters are identified by minimizing the normalized error between two bending moments. Micro genetic algorithm is used in the optimization procedure. Stress-strain curves is generated with the material parameters found in this way, which can be used with other plastic models. ABAQUS/Standard 5.8, which has the combined isotropic/kinematic hardening model, is used to simulate draw-bend of 6022-T4 series aluminum sheet. Absolute springback angles are predicted very accurately.
Technical Paper

Sound Analysis Method for Warble Noise in Electric Actuators

Multiple automotive applications exist for small electric motors that are activated by vehicle occupants for various functions such as window lifts and seat adjusters. For such a motor to be described as high quality, not only should the sound it produces be low in amplitude, but it also needs to be free from pulsations and variations that might occur during its (otherwise) steady-state operation. If a motor’s sound contains pulsations or variations between 2 and 8 cycles per second, the variation is described as warble. To establish performance targets for warble noise at both the vehicle and component level a way to measure and quantify the warble noise must be established. Building on existing sound quality metrics such as loudness and pitch variation, a method is established by which processed sound data is put through a secondary operation of Fourier analysis.
Technical Paper

Simulation and Identification of the Neck Muscle Activities During Head and Neck Flexion Whiplash

A previously developed finite element human head/cervical spine model was further enhanced to include the major muscles in the neck. The head/cervical spine model consists of the skull, C1-C7, disks, facets, and all the ligaments in this region. The vertebral bodies are simulated by deformable bodies and the soft tissues in the cervical spine are modeled by nonlinear anisotropic viscoelastic material. The motion segments in the cervical spine model were validated against three-dimensional cadaver test data reported in the literature. To simulate the passive and active muscle properties, the classical Hill muscle model was implemented in the LS-DYNA code and model parameters were based on measurements of cadaver neck musculature. The head/neck model was used to simulate a human volunteer flexion whiplash test reported in the literature. Simulation results showed that the neck muscle contraction and relaxation activities had a significant effect on the head/neck motion.
Technical Paper

Self-Tuning PID Design for Slip Control of Wedge Clutches

The wedge clutch takes advantages of small actuation force/torque, space-saving and energy-saving. However, big challenge arises from the varying self-reinforced ratio due to the varying friction coefficient inevitably affected by temperature and wear. In order to improve the smoothness and synchronization time of the slipping process of the wedge clutch, this paper proposes a self-tuning PID controller based on Lyapunov principle. A new Lyapunov function is developed for the wedge clutch system. Simulation results show that the self-tuning PID obtains much less error than the conventional PID with fixed gains. Moreover, the self-tuning PID is more adaptable to the variation of the friction coefficient for the error is about 1/5 of the conventional PID.
Technical Paper

Recycling Study of Post-Consumer Radiator End Caps

In June 1997, the Vehicle Recycling Partnership (VRP) and the American Plastics Council (APC) asked MBA Polymers to conduct a study to determine the technical and economic feasibility of recovering metals and plastics from end-of-life radiator end caps (RECs). The VRP worked with the Institute of Scrap Recycling Industries (ISRI) to obtain samples of RECs from two metal recycling companies, SimsMetal America and Aaron Metals. MBA performed its standard Recyclability Assessment on the materials, which included a detailed density and material characterization study and an actual processing study using its pilot processing line. It was found that the polyamide from RECs could be recovered in reasonably high yield and purity using tight density separations. The recycling of the REC samples used for this study generated about 40% nonferrous metal, 19% mixed ferrous and nonferrous metal and about 20% polyamide flakes.

Real time Renewable Energy Availability for EV Charging

Battery Electric Vehicles and Extended Range Electric Vehicles, like the Chevrolet Volt, can use electrical energy from the Grid to meet the majority of a driver�s transportation needs. This has the positive societal effects of displace petroleum consumption and associated pollutants from combustion on a well to wheels basis, as well as reduced energy costs for the driver. CO2 may also be lower, but this depends upon the nature of the grid energy generation. There is a mix of sources � coal-fired, gas -fired, nuclear or renewables, like hydro, solar, wind or biomass for grid electrical energy. This mix changes by region, and also on the weather and time of day. By monitoring the grid mix and communicating it to drivers (or to their vehicles) in real-time, electrically driven vehicles may be recharged to take advantage of the lowest CO2, and potentially lower cost charging opportunities.