Refine Your Search

Search Results

Viewing 1 to 9 of 9
Technical Paper

Vibro-Acoustic Analysis for Modeling Propeller Shaft Liner Material

2019-06-05
2019-01-1560
In recent truck applications, single-piece large-diameter propshafts, in lieu of two-piece propshafts, have become more prevalent to reduce cost and mass. These large-diameter props, however, amplify driveline radiated noise. The challenge presented is to optimize prop shaft modal tuning to achieve acceptable radiated noise levels. Historically, CAE methods and capabilities have not been able to accurately predict propshaft airborne noise making it impossible to cascade subsystem noise requirements needed to achieve desired vehicle level performance. As a result, late and costly changes can be needed to make a given vehicle commercially acceptable for N&V performance prior to launch. This paper will cover the development of a two-step CAE method to predict modal characteristics and airborne noise sensitivities of large-diameter single piece aluminum propshafts fitted with different liner treatments.
Technical Paper

Springback Prediction Using Combined Hardening Model

2000-10-03
2000-01-2659
The main objective of this paper is to simulate the springback using combined kinematic/isotropic hardening model. Material parameters in the hardening model are identified by an inverse method. Three-point bending test is conducted on 6022-T4 aluminum sheet. Punch stroke, punch load, bending strain and bending angle are measured directly during the tests. Bending moments are then computed from these measured data. Bending moments are also calculated based on a constitutive model. Material parameters are identified by minimizing the normalized error between two bending moments. Micro genetic algorithm is used in the optimization procedure. Stress-strain curves is generated with the material parameters found in this way, which can be used with other plastic models. ABAQUS/Standard 5.8, which has the combined isotropic/kinematic hardening model, is used to simulate draw-bend of 6022-T4 series aluminum sheet. Absolute springback angles are predicted very accurately.
Technical Paper

Overview - Painted Aluminum Wheels

1986-12-08
862022
This paper discusses the recent growth in aluminum wheel popularity and the problems associated with maintaining the wheel's appearance and corrosion protection. The various options in wheel coatings are then described as well as the adverse wheel environment. Finally, the variables affecting wheel corrosion resistance are explained and the testing that is undertaken to evaluate the performance characteristics of the wheel coating.
Technical Paper

Noise and Vibration Measurement Methods for Large Diameter Single-Piece Aluminum Propeller Shafts

2017-06-05
2017-01-1775
This paper describes recently developed test methods and instrumentation to address the specific noise and vibration measurement challenges posed by large-diameter single-piece tubular aluminum propeller (prop) shafts with high modal density. The prop shaft application described in this paper is a light duty truck, although the methods described are applicable to any rotating shaft with similar dynamic properties. To provide a practical example of the newly developed methods and instrumentation, impact FRF data were acquired in-situ for two typical prop shafts of significantly different diameter, in both rotating and stationary conditions. The example data exhibit features that are uniquely characteristic of large diameter single-piece tubular shafts with high modal density, including the particular effect of shaft rotation on the measurements.
Technical Paper

Multi-Material Topology Optimization: A Practical Method for Efficient Material Selection and Design

2019-04-02
2019-01-0809
As conventional vehicle design is adjusted to suit the needs of all-electric, hybrid, and fuel-cell powered vehicles, designers are seeking new methods to improve system-level design and enhance structural efficiency; here, multi-material optimization is suggested as the leading method for developing these novel architectures. Currently, diverse materials such as composites, high strength steels, aluminum and magnesium are all considered candidates for advanced chassis and body structures. By utilizing various combinations and material arrangements, the application of multi-material design has helped designers achieve lightweighting targets while maintaining structural performance requirements. Unlike manual approaches, the multi-material topology optimization (MMTO) methodology and computational tool described in this paper demonstrates a practical approach to obtaining the optimum material selection and distribution of materials within a complex automotive structure.
Technical Paper

Magnesium Powertrain Mount Brackets: New Application of Material Being used in this Sub-System for Vehicle Mass Reduction

2007-04-16
2007-01-1031
The need for fuel economy gains is crucial in todays automotive market. There is also growing interest and knowledge of greenhouse gases and their effect on the environment. Paulstra's magnesium powertrain brackets were a solution that was presented not just to reduce the weight of the engine mounting system (which was already under its weight target before magnesium introduction), but in response of the OEM's desire to further reduce the weight of the vehicle for CAFE and weight class impact. This new engine mounting system has three powertrain mount brackets that are high-pressure die cast AZ91D magnesium alloy. This paper will show that these brackets to have a dramatic weight reduction compared to the standard aluminum die-cast material that they replaced. This paper describes the process of approval: concept and material sign-off by the OEM, FEA for strength and modal performance, corrosion, and the final product.
Technical Paper

Life Cycle Assessment of Advanced Materials for Automotive Applications

2000-04-26
2000-01-1486
Substituting alternative materials for conventional materials in automotive applications is an important strategy for reducing environmental burdens over the entire life cycle through weight reduction. Strong, light carbon composites and lightweight metals can potentially be used for components such as body structure, chassis parts, brakes, tie rods, or instrument panel structural beams. There are also proposed uses in conventional and alternative powered vehicles for other advanced materials, including synthetic graphite, titanium, and metals coated with graphite composite, that have special strength, hardness, corrosion resistance, or conductivity properties. The approach used in this paper was to compare the environmental life cycle inventory of parts made from carbon fiber-thermoplastic composites, synthetic graphite, titanium, and graphite coated aluminum, with parts made from conventional steel or aluminum.
Technical Paper

Experimental Study of Acoustic and Thermal Performance of Sound Absorbers with Microperforated Aluminum Foil

2019-06-05
2019-01-1580
Aluminum foil applied to the surface of sound absorbing materials has broad application in the automotive industry. A foil layer offers thermal insulation for components close to exhaust pipes, turbo chargers, and other heat sources in the engine compartment and underbody. It can also add physical protection for acoustic parts in water-splash or stone-impingement areas of the vehicle exterior. It is known that adding impermeable plain foil will impact the sound absorption negatively, so Microperforated Aluminum Foil (MPAF) is widely used to counteract this effect. Acoustic characteristics of MPAF can be modeled analytically, but deviation of perforation size and shape, variation of hole density, material compression, and adhesive applied to the back of the foil for the molding process can impact the acoustic and thermal insulation performance.
Journal Article

Development of an Improved Cosmetic Corrosion Test for Finished Aluminum Autobody Panels

2008-04-14
2008-01-1156
A task group within the SAE Automotive Corrosion and Protection (ACAP) Committee continues to pursue the goal of establishing a standard test method for in-laboratory cosmetic corrosion evaluations of finished aluminum auto body panels. The program is a cooperative effort with OEM, supplier, and consultant participation and is supported in part by USAMP (AMD 309) and the U.S. Department of Energy. Numerous laboratory corrosion test environments have been used to evaluate the performance of painted aluminum closure panels, but correlations between laboratory test results and in-service performance have not been established. The primary objective of this project is to identify an accelerated laboratory test method that correlates with in-service performance. In this paper the type, extent, and chemical nature of cosmetic corrosion observed in the on-vehicle exposures are compared with those from some of the commonly used laboratory tests
X