Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Wheel Fight Objective Metric Development

2007-05-15
2007-01-2391
Wheel Fight is the undesirable rotational response of a vehicle's steering wheel due to road input at any or all of the road/wheel tire patches. The type of road input that will cause wheel fight comes in two forms: continuous rough road surfaces such as broken concrete or transient inputs such as pot-holes and tar strips. An objective method to quantify a vehicle's wheel fight sensitivity would be of great value to the vehicle development engineer. To that end, a study was conducted on Ford's Vehicle Vibration Simulator (VVS) to gather subjective responses and use those as a basis for correlation to an objective metric. One road surface known to induce wheel fight consists of using a rubber strip and driving over it while impacting only one side of the vehicle. Under this condition, steering wheel data was acquired on five different light trucks from which paired comparison studies were conducted.
Technical Paper

Wheel Dust Measurement and Root Cause Assessment

2003-10-19
2003-01-3341
North American drivers particularly dislike wheel dust (brake dust on their wheels). For some vehicle lines, customer surveys indicate that wheel dust is a significant concern. For this reason, Ford and its suppliers are investigating the root causes of brake dust and developing test procedures to detect wheel dust issues up-front. Intuitively, it would appear that more brake wear would lead to more wheel dust. To test this hypothesis, a gage was needed to quantitatively measure the wheel dust. Gages such as colorimeters were evaluated to measure the brightness (L*) of the wheel, which ranged from roughly 70-80% (clean) to 10-20% (very dirty). Gage R&R's and subjective ratings by a panel of 30 people were used to validate the wheel dust gages. A city traffic vehicle test and an urban dynamometer procedure were run to compare the level of wheel dust for 10 different lining types on the same vehicle.
Technical Paper

Weight Reduction Workshops “Saving Weight and Saving Money”

2002-03-04
2002-01-0364
Identifying weight reduction ideas is not difficult in the engineering world today. The difficulty is implementation! Typically Product System Teams generate long lists of weight reduction roadmap ideas, but never have time to deliver. Engineers today are too busy to run dual path programs. ‘Roadmap’ ideas sit on an opportunities list until they are “out of time” and then “fall off” the list. This paper will describe a Weight Reduction Workshop process implemented at Ford Motor Company which drives weight reduction ideas into program assumptions early in the definition of a product program. The weight reduction workshop results are: Weight Reduction Ideas Recommended Variable Cost & Investment Estimates Weight savings Cost per pound of weight saved Technical confidence Work plan for each recommended idea Ideas are also evaluated against all the program's sub-attribute requirements to insure the design functions of the component are not compromised.
Technical Paper

Wavelet-Based Visualization, Separation, and Synthesis Tools for Sound Quality of Impulsive Noises

2003-05-05
2003-01-1527
Recent applied mathematics research on the properties of the invertible shift-invariant discrete wavelet transform has produced new ways to visualize, separate, and synthesize impulsive sounds, such as thuds, slaps, taps, knocks, and rattles. These new methods can be used to examine the joint time-frequency characteristics of a sound, to select individual components based on their time-frequency localization, to quantify the components, and to synthesize new sounds from the selected components. The new tools will be presented in a non-mathematical way illustrated by two real-life sound quality problems, extracting the impulsive components of a windshield wiper sound, and analyzing a door closing-induced rattle.
Technical Paper

Virtual Verification of Wrecker Tow Requirements

2020-04-14
2020-01-0766
Under various real-world scenarios, vehicles can become disabled and require towing. OEMs allow a few options for vehicle wrecker towing that include wheel lift tow using a stinger or towing on a flatbed. These methods entail multiple loading events that need to be assessed for damage to the towed vehicle. OEMs have several testing and evaluation methods in place for those scenarios with majority requiring physical vehicle prototypes. Recent focus to reduce product development time and cost has replaced the need for prototype testing with analytical verification methods. In this paper, the CAE method involving multibody dynamic simulation (MBDS) as well as finite element analysis (FEA) of vehicle flatbed operation, winching onto a flatbed, and stinger-pull towing are discussed.
Technical Paper

Virtual Chip Test and Washer Simulation for Machining Chip Cleanliness Management Using Particle-Based CFD

2024-04-09
2024-01-2730
Metal cutting/machining is a widely used manufacturing process for producing high-precision parts at a low cost and with high throughput. In the automotive industry, engine components such as cylinder heads or engine blocks are all manufactured using such processes. Despite its cost benefits, manufacturers often face the problem of machining chips and cutting oil residue remaining on the finished surface or falling into the internal cavities after machining operations, and these wastes can be very difficult to clean. While part cleaning/washing equipment suppliers often claim that their washers have superior performance, determining the washing efficiency is challenging without means to visualize the water flow. In this paper, a virtual engineering methodology using particle-based CFD is developed to address the issue of metal chip cleanliness resulting from engine component machining operations. This methodology comprises two simulation methods.
Technical Paper

Verification of Driver Status Monitoring Camera Position Using Virtual Knowledge-Based Engineering

2023-04-11
2023-01-0090
A DMS (Driver Monitoring System) is one of the most important safety features that assist in the monitoring functions and alert drivers when distraction or drowsiness is detected. The system is based in a DSMC (Driver Status Monitoring Camera) mounted in the vehicle's dash, which has a predefined set of operational requirements that must be fulfilled to guarantee the correct operation of the system. These conditions represent a trade space analysis challenge for each vehicle since both the DSMC and the underlying vehicle’s requirements must be satisfied. Relying upon the camera’s manufacturer evaluation for every iteration of the vehicle’s design has proven to be time-consuming, resources-intensive, and ineffective from the decision-making standpoint.
Technical Paper

Verification and Test Methodologies for Structural Aluminum Repair

2003-03-03
2003-01-0570
The increasing use of aluminum in the design of Body In White (BIW) structures created the need to develop and verify repair methodologies specific to this substrate. Over the past century, steel has been used as the primary material in the production of automotive BIW systems. While repair methods and techniques in steel have been evolving for decades, aluminum structural repair requires special attention for such common practices as welding, mechanical fastening, and the use of adhesives. This paper outlines some of the advanced verification and testing methodologies used to develop collision repair procedures for the aluminum 2003 Jaguar XJ sedan. It includes the identification of potential failure modes found in production and customer applications, the formulation of testing methodologies, CAE verification testing and component subsystem prove-out. The objective of the testing was to develop repair methodologies that meet or exceed production system performance characteristics.
Technical Paper

Vehicle System Controls for a Series Hybrid Powertrain

2011-04-12
2011-01-0860
Ford Motor Company has investigated a series hybrid electric vehicle (SHEV) configuration to move further toward powertrain electrification. This paper first provides a brief overview of the Vehicle System Controls (VSC) architecture and its development process. The paper then presents the energy management strategies that select operating modes and desired powertrain operating points to improve fuel efficiency. The focus will be on the controls design and optimization in a Model-in-the-Loop environment and in the vehicle. Various methods to improve powertrain operation efficiency will also be presented, followed by simulation results and vehicle test data. Finally, opportunities for further improvements are summarized.
Journal Article

Vehicle Safety Communications - Applications: System Design & Objective Testing Results

2011-04-12
2011-01-0575
The USDOT and the Crash Avoidance Metrics Partnership-Vehicle Safety Communications 2 (CAMP-VSC2) Consortium (Ford, GM, Honda, Mercedes, and Toyota) initiated, in December 2006, a three-year collaborative effort in the area of wireless-based safety applications under the Vehicle Safety Communications-Applications (VSC-A) Project. The VSC-A Project developed and tested communications-based vehicle safety systems to determine if Dedicated Short Range Communications (DSRC) at 5.9 GHz, in combination with vehicle positioning, would improve upon autonomous vehicle-based safety systems and/or enable new communications-based safety applications.
Journal Article

Vehicle Safety Communications - Applications: Multiple On-Board Equipment Testing

2011-04-12
2011-01-0586
The United States Department of Transportation (USDOT) and the Crash Avoidance Metrics Partnership-Vehicle Safety Communications 2 (CAMP-VSC2) Consortium (Ford, General Motors, Honda, Mercedes-Benz, and Toyota) initiated, in December 2006, a three-year collaborative effort in the area of wireless-based safety applications under the Vehicle Safety Communications-Applications (VSC-A) Project. The VSC-A Project developed and tested Vehicle-to-Vehicle (V2V) communications-based safety systems to determine if Dedicated Short Range Communications (DSRC) at 5.9 GHz, in combination with vehicle positioning, would improve upon autonomous vehicle-based safety systems and/or enable new communications-based safety applications.
Technical Paper

Vehicle Paint Radiation Properties and Affect on Vehicle Soak Temperature, Climate Control System Load, and Fuel Economy

2005-04-11
2005-01-1880
Vehicle thermal loads in sunny climates are strongly influenced by the absorption of solar thermal energy. Reduction of the absorptivity in the near infrared (IR) spectrum would decrease vehicle soak temperatures, reduce air conditioning power consumption and not affect the vehicle visible spectrum radiation properties (color). The literature [1] indicates that paint formulations with carbon-black pigment removed or reduced can be made to be reflective to near infrared frequencies. Experiments indicated that the reflectivity can be improved with existing basecoats and primers. Experiments and numerical simulations indicate that vehicle soak temperatures can be reduced by over 2 °C with existing basecoats and primers.
Technical Paper

Vehicle Level EMC Testing Methodology and Correlation

1985-10-01
851646
This paper describes an indoor electromagnetic compatibility (EMC) testing facility designed for automotive testing over the 60 Hz to 18 GHz frequency range. The facility includes a large TEM cell, covering the 60 Hz to 20 MHz frequency range, and a state-of-the-art anechoic chamber, covering 20 MHz to 18 GHz. In addition to describing the test cells, this paper discusses testing methodology, automatic testing software and calibration. Data is presented depicting the electromagnetic field distribution in each test cell with and without the test vehicle in place. Data is also presented showing a typical field distribution near a high power shortwave transmitter site for correlation purposes.
Technical Paper

Vehicle Glass Design Optimization Using a CFD/SEA Model

2007-05-15
2007-01-2306
A new methodology to predict vehicle interior wind noise using CFD results has been developed. The CFD simulation replaces wind tunnel testing for providing flow field information around vehicle greenhouse. A loadcase model based on the CFD results is used to excite an SEA vehicle model. This new approach has been demonstrated on a production vehicle with success for the frequency range of 250-10K Hz. The CAE prediction of interior wind noise agrees within 0.2 sones from wind tunnel testing. The model has been used to evaluate wind noise performance with different door glass design parameters. A glass thickness change from 3.8 mm to 4.8 mm results in 1.1 sones improvement, which agrees well to 1.4 sones improvement from testing. Laminated glass with about 3 times higher damping results in 2.5 sones improvement. This methodology using CFD results can be used in the early stage of product development to impact designs.
Technical Paper

Vehicle Dynamics Objective Metrics

2003-11-18
2003-01-3631
Among the development phases of an automotive vehicle one can point out the definition of the main characteristics of its suspensions like for example the suspension kinematics and compliances properties. Suspension definition phase can be understood as the following scenario: given a suspension type, which hard points (geometric) and what values of stiffness for the whole system will result in a desired dynamic behavior for the vehicle as well as production feasibility. This present work intends to show the influence of some suspension properties on the global dynamic behavior of the vehicle, having as a target an efficient suspension design. In terms of global dynamic behavior this work point out some control parameters, which describe the vehicle transient and steady-state properties. Those parameters are: Yaw phase lag, understeer gradient, Steady state acceleration gain and yaw overshoot during a maneuver like brake in a turn and power-off in a curve.
Technical Paper

Validating Target Compounds to Vehicle Interior Odor Complaints by Reconstituting Their Concentrations in Vehicles

2017-03-28
2017-01-0324
Ford China had carried out a research project to validate the target compounds that lead to Chinese customers’ complaint about interior cabin odor. The aim of the study was to understand the sensitivity of the customers, using experimental design and determine which substances that are key contributors to customer odor concerns. In this research, acetaldehyde, toluene, xylene, ethylbenzene, acetone and butyraldehyde are used to conduct odor re-manufacture study through reconstituting their concentration in vehicles, it is concluded that compound classes aromatics, aldehydes, and ketones have direct relationship to the odor concerns in China.
Technical Paper

Validating Prototype Connected Vehicle-to-Infrastructure Safety Applications in Real- World Settings

2018-04-03
2018-01-0025
This paper summarizes the validation of prototype vehicle-to-infrastructure (V2I) safety applications based on Dedicated Short Range Communications (DSRC) in the United States under a cooperative agreement between the Crash Avoidance Metrics Partners LLC (CAMP) and the Federal Highway Administration (FHWA). After consideration of a number of V2I safety applications, Red Light Violation Warning (RLVW), Curve Speed Warning (CSW) and Reduced Speed Zone Warning with Lane Closure Warning (RSZW/LC) were developed, validated and demonstrated using seven different vehicles (six passenger vehicles and one Class 8 truck) leveraging DSRC-based messages from a Road Side Unit (RSU). The developed V2I safety applications were validated for more than 20 distinct scenarios and over 100 test runs using both light- and heavy-duty vehicles over a period of seven months. Subsequently, additional on-road testing of CSW on public roads and RSZW/LC in live work zones were conducted in Southeast Michigan.
Technical Paper

Validating Powertrain Controller Systems With the VPACS-HIL Powertrain Simulator

2005-04-11
2005-01-1663
To manage the function of a vehicle's engine, transmission, and related subsystems, almost all modern vehicles make use of one or more electronic controllers running embedded software, henceforth referred to as a Powertrain Controller System or PCS. Fully validating this PCS is a necessary step of vehicle development, and the validation process requires extensive amounts of testing. Traditionally, this validation testing is done with open-loop signal generators, powertrain dynamometers, and real vehicles. Such testing methods either cannot simulate complex control system interactions, or are expensive and subject to variability. To address these concerns while decreasing development time and improving vehicle quality, Ford Motor Company is placing increasing focus on validating a PCS through simulation. One such testing method is a Hardware-in-the-Loop (HIL) simulation, which mates the physical elements of a PCS to a real-time computer simulation of a powertrain.
Technical Paper

Utilizing Public Vehicle Travel Survey Data Sets for Vehicle Driving Pattern and Fuel Economy Studies

2017-03-28
2017-01-0232
Realistic vehicle fuel economy studies require real-world vehicle driving behavior data along with various factors affecting the fuel consumption. Such studies require data with various vehicles usages for prolonged periods of time. A project dedicated to collecting such data is an enormous and costly undertaking. Alternatively, we propose to utilize two publicly available vehicle travel survey data sets. One is Puget Sound Travel Survey collected using GPS devices in 484 vehicles between 2004 and 2006. Over 750,000 trips were recorded with a 10-second time resolution. The data were obtained to study travel behavior changes in response to time-and-location-variable road tolling. The other is Atlanta Regional Commission Travel Survey conducted for a comprehensive study of the demographic and travel behavior characteristics of residents within the study area.
Journal Article

Using an Assembly Sequencing Application to React to a Production Constraint: a Case Study

2017-03-28
2017-01-0242
Ford Motor Company’s assembly plants build vehicles in a certain sequence. The planned sequence for the plant’s trim and final assembly area is developed centrally and is sent to the plant several days in advance. In this work we present the study of two cases where the plant changes the planned sequence to cope with production constraints. In one case, a plant pulls ahead two-tone orders that require two passes through the paint shop. This is further complicated by presence in the body shop area of a unidirectional rotating tool that allows efficient build of a sequence “A-B-C” but heavily penalizes a sequence “C-B-A”. The plant changes the original planned sequence in the body shop area to the one that satisfies both pull-ahead and rotating tool requirements. In the other case, a plant runs on lean inventories. Material consumption is tightly controlled down to the hour to match with planned material deliveries.
X